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WebAssembly enables fast execution of performance-critical in web applications utilizing native code. However,
recent research has demonstrated the potential for memory corruption errors withinWebAssembly modules
to exploit web applications. In this work, we present the first systematic analysis of memory corruption in
WebAssembly, unveiling the prevalence of a novel threatmodelwherememory corruption enables code injection
on a victim’s browser. Our large-scale analysis across 37 797 domains reveals that an alarming 29 411 (77.81 %)
of those fully trust data coming from potentially attacker-controlled sources. As a result, an attacker can exploit
memory errors to manipulate theWebAssembly memory, where the data is implicitly trusted and frequently
passed into security-sensitive functions such as eval or directly into the DOM via innerHTML. Thus, an attacker
can abuse this trust to gain JavaScript code execution, i.e., Cross-Site Scripting (XSS).

To tackle this issue,we presentWemby, the first viable approach to efficiently analyzeWebAssembly-powered
websitesholistically.Wedemonstrate thatWemby isproficient at detecting remotelyexposedmemorycorruption
errors inwebapplications throughfuzzing.For thispurpose,we implementbinary-onlyWebAssembly instrumen-
tation that provides fine-grained memory corruption oracles. We appliedWemby to different websites, uncover-
ing several memory corruption bugs, including one on the Zoom platform. In terms of performance, our ablation
study demonstrates that Wemby outperforms currentWebAssembly fuzzers. Specifically, Wemby achieves an
average speed improvement of 232 times anddelivers 46 %greater code coverage compared to the state-of-the-art.
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1 Introduction
WebAssembly, or short Wasm, enables safe and efficient execution of native code in browser-based
applications [33]. Using ahead-of-time compilation and bytecode optimizations, Wasm promises
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to perform at near parity with native code execution, enabling the deployment of performance-
critical applications on the web. Prominent tools and websites usingWasm include Zoom, twitch.tv,
Adobe Acrobat, Disney+, and Google Earth. As of 2024, already 4.4 % of all Google Chrome page loads
instantiateWasmmodules [17], and this trend is growing.
Wasm enhances browser sandbox security by ensuring a clear interaction interface between

JavaScript andWasm. In combination withWasm’s built-in Software Fault Isolation (SFI) properties
and structured control flow, it further protects Internet users frommemory corruption attacks. This
empowers programmers to compile memory-unsafe languages like C and C++ intoWasm and host
them on websites, mitigating concerns about code-injection [71] and code-reuse [77, 81] attacks.
As evidenced by Hilbig et al. [39], who found that over two-thirds of Wasm binaries were compiled
frommemory-unsafe languages. However, compiling unsafe code toWasm does not eliminate the
inherent memory unsafety of these languages, and vulnerabilities still propagate toWasmmodules.

The efficiency and legacy code deployment of Wasm open a new potential attack vector: memory
errors can corrupt trusted host data within the untrusted Wasm linear memory. This trusted data,
often unsanitized, can range from simple integers to complex media data and can originate from
various sources. Functions processing this external input data are security-critical and serve as entry
points for exploitation. Through this interface, an attacker can interact with theWasmmodule to
inject payloads. Consequently, memory errors inWasm can lead to the corruption of trusted host
data, enabling classic web attacks such as cross-site scripting (XSS) [26, 54, 63].

Remarkably, the exploitation of bugs withinWasm is significantly easier compared to exploiting
applications running onmodern operating systems. Modern systems increasingly utilize defense-
in-depth strategies deploying mitigation techniques such as stack canaries [19] and address space
layout randomization (ASLR) [91]. In contrast, Wasm lacks these protection techniques, allowing
bugs like stack-based buffer overflows to easily overwrite the entire Wasm memory and reliably
hijack the runtime environment.

The discovery ofmemory errors in native applications is awell-studied research area, using diverse
techniques such as fuzzing [8, 23, 34, 62, 96], taint analysis [78, 92, 94], and symbolic execution [3, 6,
12, 13, 16, 32]. Existing proposals to uncover vulnerabilities inWasm code, using static analysis [11,
86], dynamic analysis [5, 56], taint tracking [27], symbolic execution [37, 38], and fuzzing [36, 58],
primarily targetingWASI [95] applications, an extension enablingWasmmodules to run outside the
browser. Yet, these methods often yield high false negatives when applied to web-integratedWasm
modules due to their stateful nature and complex interaction with JavaScript. Furthermore, this
context-free analysis of aWasmmodule outside its environment (i.e., the website) results in missed
bugs and false positives. This context-free analysis does not consider if an attacker can manipulate
the linear memory of the vulnerableWasmmodule. Likewise, current vulnerability detection tools
are unable to determine if thewebsite properly sanitizes datawritten to or read fromuntrustedWasm
memory, or if this data is passed into security-critical sinks or JavaScript functions, which could
potentially lead to XSS. As a result, state-of-the-art analysis techniques fall short forWasm code as
it is commonly deployed on the web and highlights a significant gap in research.
Contributions. This paper presents the first large-scale study (Section 4) into a novel—and surpris-
ingly not yet studied—threat model and systematically explores the impact of memory corruption in
websites usingWebAssembly. Our findings on theWasmweb landscape show that 29 411 websites
trust unsanitized data from network sources, providing a remote attacker an entry point to inject
payloads into a victim’s browser throughWasm, making them susceptible to XSS in the presence of
memory errors. Furthermore, 2782 of these websites trustWasm data by executing it with unsafe
APIs like eval() or loading data into innerHTMLwithout verifying the integrity of this data, which
may have been compromised through memory corruption. For example, websites from the BKK
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Electronics group (e.g., id.oneplus.com) embed JavaScript code (FingerprintJS [24]) within their
Wasmmodules and use eval() to execute it in the client’s browser. An attacker with control over the
Wasmmemory, could corrupt the JavaScript code, allowing them to execute malicious code within
the victim’s browser.

To address this emergent threat frommemory corruption on the web, we present the design and
implementation ofWemby (Section 6), an open-source framework for vulnerability detection in
Wasm-powered websites. Wemby overcomes the limitations of context-free analysis by considering
the Wasm module’s environment, ensuring reliable detection of memory manipulation and data
sanitization issues. Furthermore, Wemby automatically analyzes the website’s interaction with its
Wasm modules. This analysis reveals how an attacker can inject payloads into the Wasm linear
memory and whether corrupted data from theWasm linear memory is loaded into security-critical
sinks. Taking the results of the analysis into account, Wemby detects vulnerabilities with a fuzzer
that does not rely on the existence of source code. Here, Wemby usesWasmmemory snapshots to
capture the execution state and to ensure bug reproducibility on websites.
For a comprehensive analysis of aWasm-powered website, we have largely extended the taint-

aware Foxhound browser [52]withWasm-specific sources and sinks. Foxhound is aweb browserwith
dynamic data-flow tracking enabled in the JavaScript engine and DOM, based onMozilla Firefox. It
is widely used in academic research for various purposes, including fingerprinting [2, 10], client-side
XSS analysis [51, 72], and client-side Cross-Site Request Forgery detection [48], among others. Our
modifications to the Foxhound Browser amount to approximately 2300 lines of code.
Wemby offers fine-grained detection of attacker-controlled data flows (e.g., location.href) en-

tering the Wasm linear memory and accurately tracks whether this data is subsequently loaded
into security-critical sinks, such as eval(). We are not aware of any existing approach that can
provide such insights to a developer. Moreover, Wemby also integrates a custom-engineered fuzzer.
This fuzzer tests security-critical functions identified byWemby’s analysis and uses memory snap-
shots of the linear memory, ensuring bug reproducibility. This is complemented by a binary-only
instrumentation to insert novel bug oracles to identify memory corruption errors effectively. Overall,
Wemby consists of 5890 lines of code. Combining our instrumented Foxhound browserwithWemby’s
capabilities in detecting memory corruption allows for a thorough investigation of data flows and
a clear understanding of the potential for an attacker to escalate memory corruption bugs into XSS.

Weperforma large-scale evaluation to testWemby’s ability to detect security-critical functions and
fuzz highly complex websites (Section 8). In addition, we showcaseWemby’s capability in detecting
a severe bug (CVE-2018-14550) in a web application. This specific bug in the libpng library serves
as a representative case for Wasm-powered websites [11, 36, 54, 58], as performance-demanding
applications such as Zoom and twitch.tv utilizes similar libraries frommemory unsafe languages for
media decoding and leverageWasm to boost performance. Moreover, we demonstrate howWemby
not only detects memory corruption inWasm-powered websites but also show how these bugs can
be elevated to XSS. Although this step often requires significant manual effort, Wemby’s holistic
analysis of the target website aids in this crucial process. We also conduct an efficiency analysis
(Section 9) by fuzzing 76 websites, demonstrating thatWemby’s fuzzer largely outperforms related
Wasm bug-finding solutions, such asWAFL [36] and Fuzzm [58], by three orders of magnitude in
terms of execution speed and covers on average 46%more code.

In summary, we make the following contributions:

• We present the first analysis of a novel threat model and demonstrate its prevalence in the web
(Section 4).

• We develop Wemby, an open-source analysis tool that can holistically analyze and detect
memory corruption inWasm-powered websites (Section 6).
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Fig. 1. An overview of theWasm security model.

• We implement a novel binary-only instrumentation framework to detect memory corruption
vulnerabilities inWasm (Section 7).

• We demonstrate howWemby detects SFI breaking bugs inWasm-poweredwebsites (Section 8).
• We show thatWemby outperforms the state-of-the-art Wasm fuzzers [36, 58] by three orders
of magnitude while achieving significantly higher precision and code coverage (Section 9).

To foster research on the security of WebAssembly, we releaseWemby and our Foxhound fork
at https://github.com/uni-due-syssec/wemby.

2 WebAssembly Security
WebAssembly [33] is a bytecode standard supplementing the web stack. Since web browsers com-
monly execute untrusted code loaded from the Internet, Wasm’s design emphasizes its security
schemes [65]. Figure 1 details the security model and its main goals: (i) protect users from faulty code,
and (ii) provide developers with primitives and defense mechanisms to develop secure applications.
Software Fault Isolation (SFI). Wasm runs in an isolated execution environment, and any in-
teraction between theWasmmodule and its runtime is limited to explicitly exported and imported
function calls. Hence, the runtime environment can provide functions for theWasmmodule and vice
versa. Thus, a maliciousWebAssembly program cannot arbitrarily access code or data of its runtime.

For additional protectionof the runtimeenvironment, Software Fault Isolation (SFI) allows the sepa-
rationof code anddatamemory into trusted anduntrustedmemory regions. To accomplish this,Wasm
operates on multiple isolated memory regions: (i) the code section, (ii) the call stack, (iii) the operand
stack, and (iv) the linearmemory,which is the onlymemory region arbitrarily accessible by theWasm
program. In contrast to x86 applications,where code anddata pages reside in the same address space, a
Wasmmodule’s own code section is neither readable norwritable by itsWasm code. Both the operand
stack and call stack are moderated by the runtime; Wasm code can interact with the operand stack
through instructions that poporpushoperands, and the call stack is implicitlymaintained for function
calls and returns. Addresses of the runtime environment are never revealed to theWasmmodule and
cannot be accessed by it. The linear memory is controllable by theWasm and JavaScript code and ad-
dressedusing a zero-based index. Thus,Wasmmodules are restricted to their privatememory, and any
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illegal memory access outside the linear memory raises a runtime error. This design enables both the
runtime and the embedding website to safely compile, instantiate, and interact with untrustedWasm.
Control Flow Integrity (CFI). Despite the use of potentially memory-unsafe languages inWasm
code, the structured control flow [65] properties protect the runtime from attacks. Moreover, Wasm
employs CFI, a well-researched security mechanism [1, 41, 66, 77], which defends against memory
corruption attacks by enforcing predefined control-flow graphs for program execution. Wasm’s
CFI scheme guarantees the integrity of all possible branch targets. Function calls are direct, or
indexed from a predefined list, preventing jumps to arbitrary functions or instructions. These
indices are known during instantiation and cannot be altered at runtime. Indirect function calls are
also subject to type signature checks, ensuring control-flow adherence. Furthermore, control flow
instructions, such as unconditional and conditional branches, are bound to code blocks, restricting
exits to enclosing blocks. This differs from x86, where branches can target arbitrary addresses. This
design assures uniform operand stack changes for every control-flow path, preventing corruption by
unexpected operations. Function return addresses remain secure as the call stack is isolated from
Wasm instructions. However, these properties protect the runtime, and bugs in custom code can still
corrupt application data.

3 ThreatModel:Wasm in the Browser
Compromising a user account typically involves a server exploit, or stealing the credentials through
phishing, or XSS, which is the focus of our work. We introduce a novel method to achieve XSS by
exploiting Wasm modules that suffer from memory corruption bugs. An attacker can exploit the
fact that Wasmmodules integrated into websites often process untrusted data combined with trusted
data. A notable scenario involves a web server passing user-generated data to other users, as shown

Web Server

Attacker

Upload Storage,
Distribution

Download
Processing Data
Bu�er Over�ow
Display
XSS

Victim Data, e.g., Auth cookie

Image, Video, PDF

Victim

Fig. 2. Exemplary attack flow: An Attacker uploads media data that contains an exploit. When the victim
visits the website, the exploit triggers a bug in theWasm code that leads to XSS and the attacker gaining, e.g.,
the authorization cookie of the victim.

in Figure 2. One potentially malicious user, the attacker, generates data that is distributed via the
website’s server and processed by the other client usingWasm. TheWasm code decodes the data and
renders it intoHTML,which is subsequently inserted into theDOM for display. An applicationmodel
that maps to these scenarios is found in videotelephony (e.g., Zoom) and shared media platforms
(e.g., twitch.tv) that display the data generated by other users.

In the presence ofmemory errors in theWasmmodule, the attacker canhijack the decoding process
and provide arbitraryHTML code for insertion, effectively providing the attacker arbitrary JavaScript
code execution. Consequently, even without a direct XSS vulnerability, the attacker can still gain
JavaScript execution by exploiting errors inWasmmodules. This underscores the evolving landscape
of web security threats and the need for robust defenses against Wasm-specific vulnerabilities.

3.1 Motivating Example
We further emphasize the importance of discovering memory corruption inWasmwith a motivating
example inspired by related work [11, 36, 54, 58] and existing web applications (e.g., Figma, Zoom,
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1 class Converter {
2 public: string pnm2png(unsigned char []) { };
3 }
4
5 Converter *converter = nullptr;
6 // 1. Initializes the converter
7 void initialize_converter() {
8 converter = new Converter(); }
9
10 // Other functions that hinder analysis
11 string some_func_01(byte* src)
12 // ...
13 int some_func_0X(int x, float y, byte* src)
14
15 // 2. Convert and show image inside the browser
16 string convert_and_preview(byte* src) {
17 if (converter) {
18 // 3. Stack-based buffer overflow in pnm2png
19 string img = converter->pnm2png(src);
20 // 4. An attacker can overwrite this string
21 write_to_dom(img); // document.write(img)
22 return img
23 }
24 }

Fig. 3. C++ source code of anWasmmodule using a
vulnerable libpng library. An attacker can escalate
this vulnerability to execute arbitrary JavaScript.
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Fig. 4. View of the linear memory of the motivating
example. A buffer overflow can corrupt all static and
dynamic data in the linear memory.

and twitch.tv). Concerning Figure 2, consider an image-sharing service where users can upload
an image into a registry. Other websites can embed these images by using the provided JavaScript
framework, which loads the images from the registry service. On the client side, this framework
includesWasm to efficiently convert images from, e.g., PNM to PNG before displaying them. As we
will demonstrate in our evaluation (Section 4), this is a very typical use-case for deployingWasm.
For example, Google CanvasKit [29] and Amazon IVS [4] both offer packages, containing JavaScript
andWasm, to facilitate embedding third-party content on websites.

Figure 3 describes an example JavaScript andWasm interface for this kind of application. On the
client side, after the converter object is initialized (line 8), the convert_and_preview function uses
libpng to convert a received PNM to a PNG image and renders it directly to theDOM. This application
is vulnerable due to a buffer overflow vulnerability in this version of libpng (CVE-2018-14550).

Figure4describes the layoutof the linearmemoryduring the imageconversion. Inbenigncases,src
(line 16) does not overflow, and the program appends the converted image img (line 19) to the DOM.
However, the lack of memory protection inside the linear memory allows an attacker to perform a
stack-to-heap buffer overflowand overwrite theHTML template to display the image. In this scenario,
the attacker uploads an XSS payload to the image registry. An unsuspecting user might request this
image, inadvertently loading the attacker’s payload into their memory, resulting in an XSS attack.
Note that traditional attacking techniques that overwrite the return address are ineffective on

Wasm, as the return address is located outside the linear memory, making it inaccessible to the
overflow. Conversely, Wasm does not support standard defense mechanisms like guard pages, as its
linear memory model lacks segmentation and memory permissions. This limitation makes it difficult
to isolate and safeguard different memory regions effectively.

3.2 WebAssembly (In-)Security
The fundamental question is whether the security mechanisms deployed inWasm are sufficient to
prevent exploitation. Control flow and data flow ofWasmmodules are restricted. Access to the host
environment is limited to explicitly exported functions. An attacker cannot directly access return
addresses to hijack the control flow because these are inaccessible from inside theWasmmodule.
However, code vulnerabilities do not vanish but still exist given that Wasm code is developed mainly
in memory-unsafe languages [39], such as C and C++.
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Coarse-Grained CFI Checks. Wefirst study the CFI security model.Wasm deploys signature type
checking for indirect function calls. However, these checks are confined toWasm’s limited set of
types, using only two integer types (i32 and i64) and two floating-point types (f32 and f64). This
restriction stands in contrast to more comprehensive CFI checks found in languages like C and C++,
which can validate function signatures containing user-defined or compound types. As a result, the
signature checks performed byWasm are considered highly coarse-grained, i.e., multiple functions
are mapped to the same signature type. As existing work in this field has shown [21, 26, 28, 63], an
attacker can easily divert the control-flow to a large pool of possible functions without violating the
function signature.
InsecureMemoryManagement. A typical executable (e.g., Linux ELF orWindows PE) divides
memory into different regions, such as the stack and the heap. The pages in thesememory regions are
assigned explicit memory permissions, e.g., data regions are writable or read-only but not executable.
However, when compiled toWasm, all these different non-executable memory regions reside in a
single continuous array of bytes, the so-called linear memory. Linear memory is represented as a
JavaScript array, making it mutable and effectively both readable and writable. In addition to the
stack and heap, the linear memory contains the read-only data sections of the program and its linked
binaries, such as the libc. As a result, the isolation and memory permissions typically utilized for
ordinary executables no longer exist inside the linear memory. For instance, read-only memory
regionsbecomewritablewhencompiled toWasm.While there is noofficial documentationexplaining
this decision,we speculate this decisionhas beenmade for performance reasons, i.e., enabling efficient
memorymanagement and directmanipulationwhich is vital for high-performance applications. This
design pattern also promotes consistency with JavaScript, facilitating interoperation and effective
use of typed arrays and buffers.
Reliable Exploitation. While theWasm security model mitigates code injection [71] and code
reuse attacks [81], data-only attacks [41, 42] are feasible inWasm [26, 54, 63]. These attacks circum-
vent CFI because they do not rely on deviating the intended control-flow of a program. Typically,
data-only attacks involve multiple stages, such as exploiting a memory leakage vulnerability to
perform amemory disclosure attack [74, 83], which is necessary to bypass Address Space Layout
Randomization (ASLR) [91]. These additional stages increase the complexity of the attack. However,
the static placement of data inWasm and the absence of randomization within the linear memory
actually simplify the exploitation ofmemory corruption vulnerabilities. In fact, thememory addresses
of the data that an attacker seeks to manipulate reside at predictable addresses, which allows for
reliable and reproducible exploitation.

4 Prevalence of a New Threat inWasm-PoweredWebsites
Given the threat model and vulnerable application patterns described in Section 3, we derive four
properties (P) of a website required to be exploitable viaWasmmemory corruption: (P1) the attacker
canmanipulate the content of the linearmemoryof the vulnerablemodule, (P2) , thewebsite performs
no sanitization of the data written into and from the linear memory, and (P3) the website reads from
the linear memory and passes this data into a JavaScript function that can lead to code execution.
Lastly, (P4) the website deploys aWasmmodule with a memory corruption vulnerability.
To show that the presented threat model occurs in the wild, we measured the three properties

related to websites usingWasmmodules, i.e., P1 to P3. Based on these insights, we will assess P4 in
the following sections, as this primitive presents its own set of challenges. While TaintAssembly [27]
and, to some extent, Wasabi [56] enable taint tracking within Wasm, neither solution currently
supports the tracking of data flows across boundaries involvingWasm, JavaScript, and the DOM.
Moreover, the identification of attacker-controllable input sources (e.g., location.href) is performed
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Table 1. Top sources loaded into the linear memory.

Source # Dataflows # Domains
HTMLCanvasElement.
toDataURL

154 147 826 25 117

WebSocket 123 738 655 4971
XMLHttpRequest.response 16 333 705 5118
sessionStorage.getItem 269 892 41
localStorage.getItem 251 169 160
location.href 124 652 2401
document.baseURI 69 674 2065
document.cookie 14 474 200
document.referrer 9143 334
location.pathname 6285 194
document.documentURI 5175 26
location.search 3050 41
location.hash 1728 20

Table 2. Top sinks receiving data from linearmemory.

Sink # Dataflows #Domains Vulnerability
Function.ctor 386 745 2286 XSS
innerHTML 38 742 842 XSS
a.href 23 993 1341 XSS
eval 9297 643 XSS
fetch.url 5045 1054 Request Hijacking
sessionStorage 2524 345 Stored XSS
localStorage 1437 317 Stored XSS
XMLHttpRequest.
setRequestHeader

1417 68 Request Hijacking

XMLHttpRequest.
open(url)

1384 497 Request Hijacking

script.src 917 266 XSS
window.postMessage 578 97 XSS
XMLHttpRequest.send 328 123 Request Hijacking
iframe.src 174 113 XSS
document.cookie 123 80 Stored XSS
WebSocket 224 127 Request Hijacking

manually, underscoring the need for a new approach. To this end, we modified the open-source
taint browser project Foxhound [52], a Firefox fork that supports tracking of tainted values through
both the JavaScript engine and the DOM.We added support to track data flowing into and out of
theWasm linear memory. We analyzed how JavaScript interacts with theWasm linear memory and
found that it typically uses the TypedArray and DataView data types. Based on this analysis, we
enhanced the Foxhound browser by appending taint information to the base class for all array buffer
views, ArrayBufferViewObject, and all relevant subclasses. Additionally, we modified methods,
such as Uint8Array.set(), to propagate tainted values when using these objects. In summary, we
added 2343 lines of code across 118 files to the Foxhound project. With these changes, we can track
data flows from attacker-controlled sources (e.g., URLs, WebSockets) into theWasm linear memory.
Similarly, by tainting data originating from linear memory, we can measure whether there are data
flows to security-critical sinks, e.g., eval or innerHTML.
Measurement Parameters. We visit the websites assembled from [17] and randomly choose three
links from the front pages to follow. After loading each page, Foxhound automatically analyzes the
interactions between JavaScript andWasm for 30 seconds. In line with prior research [7, 48, 50, 64,
87], our crawler does not perform any user interactions. In total, we inspected 205 977 websites, of
which 37 797 useWasm on load.
Data Flows Into and From LinearMemory (P1). Our analysis of theWasm landscape revealed
that 29 411 websites load data from attacker-controlled sources into the linear memory, effectively
allowing an attacker to inject her payload into a victim’s browser. Table 1 shows the different origins
of the data. Note that these contain sources not considered for classical web attacks, e.g., XSS. On
websites usingWasm, data received viaWebSockets or displayed in canvas elements often originates
from other users or servers. For example, during a Zoom call, the video feed from other participants
is received over aWebSocket and then loaded into each participant’s Wasm linear memory.
WasmModules Rely on Dangerous APIs To InteractWith the Environment (P2). Although
the securitymodel ofWasmcould be used to build a fine-grained hostAPI that protects theDOM from
malicious modifications, our study indicates that developers rely on generic APIs that provideWasm
moduleswith extensiveDOMaccess.While access to evalmay be required for third-party and legacy
modules that cannot be changed or performance-criticalmodules that are slowed downby a tightAPI,
this makes eval readily available to an attacker to escalate memory corruption inWasmmodules to
XSS. Table 2 summarizes our findings: Overall, we learned that 4065 websites expose their DOM to
theWasmmodule. MostWasm compilers provide developers access to JavaScript API’s. For instance,
if the module creates JavaScript functions or objects, Emscripten automatically exposes functions
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such as Function.ctor or eval to theWasmmodule. Based on the documentation [22], this is not
fully clear and exposes the module to the strongest XSS primitives available. These functions provide
access to anything in the JavaScript environment—including cookies, sessionStorage, and the DOM.

One particularwebsite, queenscommonwealthtrust.org, first iterates through an array in theWasm
linear memory containing strings like document, window, and location. It then calls into JavaScript,
which uses eval on each item in these objects and stores the results back into theWasmmemory.
However, this trust in the integrity of the data stored in theWasm linear memory introduces a new
security threat, as the data used in these APIs comes from linear memory and can be manipulated
in the presence of memory errors.
Concealing JavaScript in Wasm. During the analysis of the websites that use these unsafe
JavaScript APIs, we discovered anothermotivation for developers to include eval in theAPI provided
toWasm: The websites of the BKK Electronics Group useWasm to store an obfuscated version of
FingerprintJS [24] in their linear memory, which is later deobfuscated and loaded into the browser.
This practice highlights the trend of concealing JavaScript code within Wasmmodules, allowing
them to disguise the use of a well-known fingerprinting script and circumvent traditional blocking
mechanisms. The process works as follows: id.oneplus.com instantiates aWasmmodule upon page
load, containing encrypted JavaScript code in its memory. After instantiation, the JavaScript code is
decrypted, enabling the website to load this data and use it as input for eval(). Nevertheless, this
obfuscation does not protect users frommemory corruption. The static placement of decrypted data
in linear memory makes it easier to exploit memory errors, which can overwrite the result that is fed
into eval, resulting in XSS. This further emphasizes the significant impact ofWasm bugs and the
role of Wemby in detecting them.
Sanitization (P3). Web applications increasingly rely onWasmmodules for DOMmanipulation,
local and session storage, and web requests, with analytics platforms often sending tracking data
through these requests.However, attackers canexploit thisbycorruptingURLsused to fetch resources,
injecting malicious JavaScript into a victim’s browser. The level of risk varies depending on the
website’s trust in and use of data withinWasm’s linear memory. Our analysis reveals that developers
rarely preprocess tainted data loaded into Wasm memory, particularly on client-side JavaScript.
This lack of data sanitization is widespread: 98.48% of data flows into Wasm linear memory are
unsanitized, enabling the exploitation of memory errors. Moreover, 97.30% of outgoing data from
Wasm into security-critical JavaScript APIs or HTML sinks is also unsanitized. Specifically, 95.28% of
the websites we studied demonstrated data flows where tainted data enteredWasmmemory without
modification and was subsequently used in security-sensitive contexts, emphasizing the significant
security risks associated with unprocessedWasm data flows.
Summary. Overall, 95.28%websites in our large-scale study provide an attackerwith the possibility
to inject a payload into a victim’s linear memory while trusting the data read from linear memory
sufficiently to pass it into security-sensitive sinkswithout further sanitization. An attacker exploiting
a memory corruption error in a Wasm module can leverage this trust to escalate the memory
corruption into an XSS vulnerability. In conclusion, we have shown that the threat model described
in Section 3 directly applies to the vast majority ofWasm-powered websites.

5 Web(Assembly) Challenges For Fuzzing
Reviewing the final property P4, which involves detecting memory errors, necessitates a novel
approach forWasm-powered websites. Existing approaches to detect memory errors inWasmmod-
ules [11, 36–38, 58] focus onWASI [95] applications. WASI is an extension for Wasm enabling to
runWasm binaries outside the browser while providing a common set of system calls to interact
with the underlying system, e.g., for file access. However, Wasmmodules in web applications rely on
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their integration with the website’s JavaScript code to communicate with their environment. While
a context-free analysis of Wasmmodules might uncover some bugs, taking the JavaScript integration
into account is essential to accurately assess the attack surface and vulnerabilities of Wasmmodules
in web applications. In the following, we detail the issues existing context-free approaches face on
the example from Section 3.1.

Challenge 1:Wasm and JS Interaction Interface
UnlikeWASI applications with a single entry-point, Web-Wasmmodules allow JavaScript to call any
exportedWasm function at any time. For instance, in the motivating example, by only examining
theWasmmodule, it is impossible to determine which functions are actually used. A context-free
fuzzer might find a bug in some_func_01() (line 11 in Figure 3). However, if the website’s JavaScript
code does not use this function, this bug is a false positive. Without a thorough understanding of
the application, an analyst might test every function, consuming substantial time. This approach
does not scale, as the number of functions in aWasmmodule can be large; for instance, Zoom uses
18 765 differentWasm functions during a video call.

Besides knowing which functions are called, it is essential to understand the specific data and
semantics that each function requires. For example, a vulnerable function expecting a pointer to a
buffer might crash if given incorrect data, leading to false positives without detecting the underlying
vulnerability. For instance, the vulnerable function in the motivating example expects a pointer to
a buffer. If an incorrect data type is provided to the function, it could crash due to these incorrect
semantics, e.g., by accessing data outside the linear memory, but the underlying vulnerability might
not be detected. Ultimately, this results in a false positive.

Challenge 2: Statefulness
Wasmmodules often require a specific memory state to execute function calls correctly. This means
that existing approaches must initialize and manage the memory state accurately for meaningful
testing. If the memory is in an unexpected state, function calls may fail or behave unpredictably,
leading to false negatives, i.e., missed vulnerabilities. In particular, Wasmmemory is often initialized
using memcpy or Array.set functions for data processing or object construction before the actual
function calls. For instance, the vulnerable function in Figure 3 is only called if theconverterobject is
initialized (line 8).Consequently, detecting thebug in libpngdependson the stateof the linearmemory.

Similarly, Wasmmodules can maintain internal state across multiple function calls. This state can
then affect the behavior of subsequent function calls, making it essential for bug-finding approaches
to preserve and manage this state during testing. For instance, a function might behave differently
based on the results of previous function calls. Context-free attempts to find bugswithout considering
the internal and memory states can lead to incorrect conclusions about the module’s behavior and
potential vulnerabilities, resulting in incomplete or inaccurate testing.

Challenge 3: DetectingMemory Corruption inWasm and Test-Driver Code Generation
Detecting memory corruption in Wasm modules during runtime is limited to identifying Wasm
traps [65], which are triggered by invalid operations such as out-of-bounds memory access of the
linear memory. While these traps ensure that memory operations stay within allocated boundaries,
they cannot detect overflowswithin the linear memory, thereby missing vulnerabilities like buffer
overflows. This is critical for compiled languages emulating a stack with linear memory (e.g., C and
C++). WhileWAFL [36], SeeWasm [37], andWasmati [11] rely on traps for error detection, Fuzzm [58]
instrumentsWasmmodules to detect heap and stack buffer overflows, addressing spatial memory
safety violations. However, this approach is limited to WASI-Wasm modules and lacks temporal
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Fig. 5. Architecture design ofWemby. Our tool analyzes the data flow through a web application and records
all necessary data to simulate the execution environment for fuzzing using custom bug oracles.

memory safety detection (e.g., use-after-free). Enhancing bug oracles for finer-grained detection
is essential for accurately identifying such vulnerabilities.

UnlikeWASI-Wasm, which uses standard input (stdin), Wasmmodules on the web require struc-
tured input. Structured input involves complex data types and relationships between different pieces
of data. WASI-Wasm fuzzers can simply use a single input for the entry-point, but forWeb-Wasm
modules, each corresponding function needs to be associated with its respective structured input.
Developing methods to automatically infer or specify the required input structures is crucial for
effective bug detection inWasmmodules, ensuring accurate and meaningful testing.

6 Design
Wemby’s goal is to automatically find memory corruption bugs inWasmmodules embedded on web-
sites. Our design choices ensure thatWemby tackles each challenge and guarantees that each bugfind-
ing is reproducible. The high-level design of ourWasm analysis architecture is visualized in Figure 5:
Themain idea ofWemby is to: 1 collectWasm function call traces, analyze this information and iden-
tify security-critical functions (Challenge 1), 2 record snapshots of websites (Challenge 2), and 3 fi-
nally, instrument theWasmwithmemoryerror oracles andfindbugs through fuzzing (Challenge3). In
the following, we describe how each aspect solves a different set of challenges described in Section 5.
AnalyzeExternal Input 1 . Weanalyze the attack surface by tracing every interaction between the
website and theWasmmodule. Following the threat model in Section 3 and addressing Challenge 1,
we investigate how attackers can influence data passed to the Wasm module. Exploitation entry
points, such as URLs, are limited to specific communication channels (Table 1), thatWemby classifies
these as external input data. Note that data coming from network sources are classified as external
input data if they originate from a different domain than the host website—e.g., scheck.se processing
media data from twitch.tv. The analysis of recorded taints is highly extensible, allowing analysts to
implement various de-sanitization schemes. However, as shown in Section 4, many websites either
do not sanitize external input, making it a significant attack vector. Wemby captures runtime data
from live websites using Wasm by tracing every interaction between the website and the Wasm
module. This reveals the data flow between JavaScript andWasm, detailing whichWasm functions
are invoked, their arguments, and the overall module state. This analysis also helps infer which data
fromWasm is loaded into security-critical sinks (Table 2), allowing to escalate issues found with
Wemby into impactful bugs. Lastly,Wemby uses this interaction data to infer function argument data
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types (Challenge 1 and Challenge 3), ensuring accurate structured input for fuzzing. Analyzing these
call traces and function arguments enhances fuzzing accuracy and prevents false positives, e.g., due
to calling functions with incorrect data types. We evaluate the impact of this analysis in Section 9.1.
Record Snapshots 2 . Wasm itself is also stateful, as the linear memory changes throughout the
lifetime of theWasm instance. The linear memory can either be modified by theWasmmodule itself
or by thewebsite’s JavaScript code. A common pattern is for thewebsite’s JavaScript to first load data,
for example, strings or objects, into the linear memory for theWasmmodule to use. To understand
these state changes, we take snapshots of the linear memory at the beginning of eachWasm function
invocation and before it terminates (2). Afterward,Wemby analyzes these snapshots to automatically
generate realistic test-driver code. That is code that can reproduce a website’s Wasm function call
without losing its execution context. This ensures that function invariants, such as data being stored
at specific addresses or object initialization, are not violated. This analysis significantly improves the
code coverage achieved byWemby, which we show in Section 9.2.
FuzzingWeb-WebAssembly Natively 3 . After analyzing and evaluating the call traces, we can
start to fuzz the target. The analysis enables Wemby to fuzzWasm outside its host environment, i.e.,
the browser. Thus, we can omit the original Wasm embedding and instead re-compile the Wasm
module into an instrumented x86 binary. This allows us to take advantage of state-of-the-art binary
optimization and advanced fuzzing techniques [25] to increase the performance of our fuzzer and
achieve better results. Previous work [36, 58] uses VM instrumentation, which is significantly slower,
as we will show in Section 9.3. GivenWasm’s lack of inherent memory protection for linear memory
(as discussed in Section 3), Wemby implements Wasm-specific test oracles. These oracles, based
on the ASan memory error detection algorithm [80], are adapted to the challenges posed byWasm
modules. Since we target arbitrary websites often employing proprietaryWasmmodules, we lack
access to their source code. Consequently, our implementation directly targetsWasm binaries and
does not require access to the module’s source code.

7 Wemby
In this section, we detail the implementation ofWemby, which includes a live analysis of websites.
We instrument Wasm modules for call traces, browser interfaces for network traces, and create
Wasm linear memory snapshots. Furthermore, we implement fine-grained memory error oracles for
Wasm to detect temporal and spatial memory corruption. Unlike clang ASan,Wemby operates on
bytecode. Finally, we incorporate the analysis and the instrumentedWasm into the fuzzing process.
The engineering effort behind Wemby is substantial, with the automated fuzzer test-driver code
generation and memory corruption oracles implemented in C and Python comprising 3400 lines of
code, the tracing ofWasm calls in JavaScript consisting of 1900 lines of code, and trace analysis in
Rust with 590 lines of code.

7.1 WasmWebsite Tracing
While TaintAssembly [27] provides taint tracking within Wasm modules, it does not address the
complex interactions between JavaScript, Wasm, and the DOM required by our threat model. Our
taint-aware extensions to the Foxhound browser [52] bridge these execution contexts, yet neither
approach identifies functions that actually access attacker-controlled data. To isolate security-critical
functions and to evaluate the state of the website, we leveraged the browser automation framework
Playwright. Wemby automatically collects the user interactions and the corresponding effects on the
Wasmmodule. With the combination of this taint-aware browser and ourWasm instrumentation,
Wemby provides unique insights onWasmmodules and how an attacker can manipulate them.
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(func $wasm_func
(arg0) (result i32)

;; Wemby instrumentation start
block
  i32.const 147  ;; function
identifier
  local.get $arg0
  call callback
end
;; Wemby instrumentation end

;; function prologue
global.get 0
i32.const 336
i32.sub

;; function body
...
call some_js_func
...

function
some_js_func(...) {...}

;; function epilogue
i32.const 336
i32.add
global.set 0 ;; Wemby instrumentation start

block
 i32.const 147  ;; function
identifier
 local.get return_value
 call callback
end
;; Wemby instrumentation end

;; end of the Wasm
function

function callback(...) {
  pause_execution();
  store_trace();
  take_snapshot();
}

1

4

5

6

function callback(...)
{
  pause_execution();
  store_trace();
  take_snapshot();
}

7

8

9

10

11

2

3

Application Code Instrumentation Application Code InstrumentationApplication Code Instrumentation

function callback(...) {
  pause_execution();
  store_trace();
  take_snapshot();
}

Fig. 6. Dynamically instrumentingWasmmodules in the browser. Solid circles depict the application code
and dashed one’s instrumentation code.

Wemby intercepts loadingof the requestedWasmmodule before it is usedby thewebsite.Afterward,
Wemby takes theWasmmodule and the imported JavaScript functions, i.e., those thatWasm functions
can call, and instruments eachWasm function and JavaScript function such that a callback function
is called at the beginning and at the end of each invocation.We developed our own tailor-made,Wasm
instrumentation tool that inserts the callbacks to JavaScript.OurWasm instrumentation framework is
based onWalrus [93] and is compiled toWasm. Figure 6 describes the instrumentation:Wemby inserts
a new block at the beginning and end of everyWasm function. The block at the beginning of the func-
tion (2) pushes the function’s identifier and parameters onto the stack. Then, the callback function (3)
is called, and the execution of theWasm function continues (4). This enablesWemby to collect detailed
runtime information of theWasmmodule, e.g., to recordwhich functions are called, their parameters,
and the order of the calls. This instrumentation ensuresWemby logs every call in theWasmmodule
and stores these traces, thereby capturing the exact interaction of the website with the module’s API.
Afterward, Wemby snapshots theWasm linear memory to correctly replicate the application’s state
during fuzzing (Section 7.3). Instrumenting bothWasm and JavaScript functions (5)-(7) gives us com-
plete insight into the interactionbetween the twoenvironments. Likewise,we instrument theepilogue
in steps (8) to (11) to capture the result of theWasm function and the state of the linearmemory. Finally,
Wemby uses the patchedWasmmodule and JavaScript functions to instantiate theWasmmodule.

7.2 Analyzing Traces
Using the call traces to Wasm functions that the tracing (Section 7.1) collected, Wemby analyzes
the potential attack surface and determines security-critical functions. These areWasm functions
that are called with attacker-controlled data provided by Foxhound (Table 1). To accomplish this, we
analyze each called function’s parameters to determine their respective trust level. Figure 7 illustrates
howWemby measures the trust level: We approximate a parameter’s trust level by performing taint
inference [79] against external input data (e.g., WebSocket payloads or location.href) collected
during the tracing. If the trust level of the data passed as a parameter is high, i.e., no data from external
sources is directly used, an attacker has no control over this parameter. Consequently, Wemby does
notmutate parameters with high trust level during fuzzing, If all function parameters have high trust
levels, Wemby marks this function as uninteresting, as an attacker could not exploit this function.
Wemby also infers dependencies between function parameters. For example, it identifies when a
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Fig. 7. Example on how Wemby decides what values should be mutated during fuzzing. Parameters are
color-coded to reflect the outcomeof the analysis. Red is the lowest trust, as the taint interference found amatch
against external data sources, depicted under Known Values (Table 1). Orange highlights dependent values;
here, the length of the strings passed as the next argument. Green are constant values over several invocations.

string is in one parameter and its corresponding size is in another by analyzing the function calls
throughout the analysis.

7.3 FuzzingWeb-WebAssembly
Wemby’s fuzzing component is designed to realistically resemble the actual usage of theWasmcode in
the browser. Here,Wemby automatically generates test-driver code for each security-critical function
with its required structured input. Using the call trace analysis results, we can ensure that a bug
reported by the fuzzer can also be triggered (Section 9.1) on the website. Further, Wemby re-compiles
theWasmmodule to native x86 code usingwasm2c [31] and adds additional instrumentation in this
step. This approach allows us to use state-of-the-art native fuzzing techniques to fuzzWasmmodules
and omit the (browser) environment, which heavily reduces the overhead and increases the fuzzing
performance (Section 9.3).
MemoryErrorDetection. We implement specific oracles inspired byAddressSanitizer (ASan) [80]
to detect memory errors (Section 3) during fuzzing. ASan is a widely used memory error detector for
C and C++ programs that maintains shadowmemory to track the state of each memory byte, marking
them as either accessible or poisoned (redzones). It instruments memory accesses at compile-time to
check if they touch poisoned regions, thereby detecting various memory corruption bugs.

While existingWebAssembly fuzzers like Fuzzm [58] rely solely on basic stack and heap canaries
for memory error detection, our approach implements a more comprehensive, binary-only version
of ASan’s capabilities. Operating directly on compiledWasmmodules without requiring source code
access, our oracles maintain shadow memory to monitor both the program’s data structures and
the redzones between them. This enables detection of both spatial memory violations (e.g., buffer
overflows) and temporal issues (e.g., use-after-free).
We achieve this comprehensive memory monitoring by instrumenting function prologues and

epilogues to track stack allocation sizes, while also hooking theWasmmodule’s dynamic memory
management functions (e.g., malloc and free) to maintain heap allocation states. By checking if
anyWasm instruction attempts to access a redzone, Wemby can effectively detect memory errors.
This approach enables both precise detection of memory-related vulnerabilities and the generation
of detailed bug reports for invalid memory accesses.
ReplicatingWasm Function States and Emulating JavaScript Functions. To automatically
replicate the state of the original Wasm function call, Wemby loads the recorded snapshot before
calling the target function. WAFL [36] employs a similar technique for fuzzingWASI-Wasmmodules
by utilizing an initial snapshot. However, their method relies on a single snapshot taken prior to
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invoking the entry point of theWASI-Wasmmodule, used solely to avoid reinitializing linearmemory
for each fuzzing iteration—an approach that is not feasible for Web-Wasm because of its stateful
nature (see section 5). In contrast, our approach leverages snapshotting to accurately replicate the
complete state ofWeb-Wasm for each security-critical function. This detailed replication not only
ensures reproducibility of bugs in a browser environment but also facilitates a more fine-grained,
function-level analysis of problematic behavior. Further, the fuzzer only mutates data of low trust
level (Figure 7), while data with a high trust level, e.g., constant data, use the recorded values from
the website traces. The fuzzer mutates integer types directly, and for pointers, it allocates buffers
with fuzzing input in theWasm linear memory. Wemby uses the recorded JavaScript function call
traces to emulate the environment. We build a map of the arguments use in functions calls to the
return value. When the fuzzer calls an imported function, we look up the recorded return value.
PerformanceOptimizations. Wemby’s fuzzer usesAFL++ [25] to take advantage of state-of-the-art
fuzzing techniques, such as persistent mode fuzzing, which avoids the bottleneck of forking a new
process for each fuzzing iteration. Further, we use mmap to load the snapshot of the linear memory to
optimize the state reset utilizing the operating system’s copy-on-write mechanism. This allows us to
efficiently reload even 64MB-sized snapshots with minimal overhead (Section 9.3).

8 DetectingWasm Sandbox-Breaking Bugs withWemby
In this section, we useWemby to evaluate the results of our design choices. As we will see, Wemby
is the only existing tool that can find SFI breaking bugs in websites. Here, Wemby is effective in
identifying security-critical functions and detecting attacker-controlled input data. It can uncover
multiple bugs discovered through our analysis and assist inwriting exploits. Ultimately,Wemby is the
only approach capable of revealing the presence of P1 to P3 (Section 4) in a website, demonstrating
its benefit over related work [11, 36–38, 58].

Ethical Considerations and Vulnerability Disclosure
Since our threatmodel includes third-party systems, wemust consider the potentially harmful effects
of our analysis on their infrastructure. Exploiting bugs would involve introducing harmful data into
live systems we do not own, which is against ethical guidelines and ACM submission policies. For
example, manipulating video streams to trigger memory corruption errors via twitch.tv could trigger
unknown bugs in their server infrastructure. Hence, we skip the servers and substitute the trusted ex-
ternal input datawith our payload only on our localmachines to escalate bugs toXSS. Similar to previ-
ouswork [15, 88, 89, 97],we try to contactwebsite authors to report vulnerabilities detectedbyWemby.
Despite earnest attempts, the lack of readily available contact information hindered progress, forcing
us to contact generic email addresses such as webmaster@domain [20]. We are currently disclosing
bugs and offering collaboration to affected website operators to fix any uncovered vulnerabilities.

8.1 Detecting CVE-2018-14550
We evaluated the accuracy ofWemby by analyzing the web application from Section 3.1. TheWasm
module compiled using Emscripten incorporates 442 functions. Wemby reported that 8 of the 442
functions were called during the experiment. These 8 functions were called 82 times, most of which
are used for memory management (e.g., malloc and free) and to copy data into the linear memory.
Afterward, Wemby further analyzed these 82 calls. It correctly identified convert_and_preview as
the sole functionprocessingexternal inputdata, namely thePNMimage. Furthermore,we learned that
two security critical sinks use data from the linear memory: Function.ctor and document.write.
Wemby generated the fuzzing harness to simulate the execution of the web application at the

time of the function call to convert_and_preview. This includes the content of the linear memory
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1 BUG FOUND THROUGH WEMBY ORACLES
2 ============================================
3 BACKTRACE
4 libpng_fuzz[0x213519]report_error
5 libpng_fuzz[0x2136fb]is_poisoned
6 libpng_fuzz[0x21a3e6]i32_store8
7 libpng_fuzz[0x22bfbb]w2c_get_token
8 libpng_fuzz[0x220722]w2c_pnm2png
9 libpng_fuzz[0x216c82]w2c_convert_and_preview
10
11 REASON: STACK COOKIE OVERWRITE!

Fig. 8. ExcerptofWemby’s report forCVE-2018-14550.

1 ==109708==ERROR: AddressSanitizer:
2 stack-buffer-overflow on address 0x7ffc0e9467a0
3 at pc 0x5613223c6229
4 bp 0x7ffc0e9461a0
5 sp 0x7ffc0e946198
6 WRITE of size 1 at 0x7ffc0e9467a0 thread T0
7 #0 0x5613223c6228 in get_token
8 #1 0x5613223c28c6 in pnm2png
9 #2 0x5613223c203e in main
10 #5 0x5613222dd274 in _start
11 ==159476==ABORTING

Fig. 9. Excerptof clangASanreport forCVE-2018-14550.

before the target function’s execution, which we collected during the analysis. In this example, this
places the converter object, used to convert the image by the application, in the linear memory at
the correct location. Thus, using the snapshot during the fuzzing ensures the condition in line 17
of Figure 3 is satisfied, as it is when interacting with the website through the browser. In contrast
toWemby, existingWasm fuzzers [36, 58] cannot satisfy this condition, as they lack insight into the
module’s environment and initialization logic. Therefore, these tools are unsuitable for detecting
bugs onWasm-powered websites.
We fuzzed this program for 24 h and measured an average execution speed of 20 268 exec/s. In

comparison, WAFL achieves about 279 exec/s. Figure 8 shows the stack trace fromWemby’s bug
report for this experiment. For reference, Figure 9 shows an excerpt of an identical report produced
by clang ASan for the same bug. Wemby successfully detected the memory corruption vulnerability,
pinpointed thevulnerable function, andaccurately classified the issue as a stack-basedbuffer overflow.

8.2 FromMemory Corruption to XSSwithWemby
We illustrateWemby’s exploit facilitation capabilities using a memory corruption vulnerability in a
Wasmmodule found on awebsite fromour analysis (Section 4). This homeware and clothing retailer’s
website enables customers to purchase items online and provides a feature for users to scan item bar-
codes for queries.After analyzing the targetwithWemby,wediscovered that thismodule invokesmul-
tiple calls to unsafe JavaScript functions. A noteworthy function is triggered when the user engages
with the scanner: TheWasmmodule repeatedly uses emscripten_run_script_string, i.e., eval(),
to check the current date using Date.now().toString(), and saves the result in linear memory.
Wemby identified that unsanitized data from a third-party WebSocket is being loaded into the

Wasmmemory. Furthermore, Wemby detected a memory error that allows an attacker to overwrite
data in theWasmmodule’s linear memory through this unsanitized data. All the data used by the
unsafe JavaScript functions are located at static offsets in the linear memory and can be overwritten
with this primitive.

The attack process is as follows: The attacker substitutes the network datawith the exploit payload.
When the victim visits the website, the payload overwrites the Date.now().toString() string at
address 2294 in linear memory with the XSS payload. The vulnerability is triggered when the victim
uses the barcode scanner to scan an item. Due toWeb-Wasm’s stateful nature, the payload persists in
the linear memory until the victim reloads the website. Every time the barcode scanner is reopened,
the XSS payload is executed instead of the Date.now().toString() function.
This attack underscores the need to examine the interaction interface between aWasmmodule

and its environment. Wemby traces 460 functions, seven of which process unsanitized data and
provide insight into data reaching 74 unsafe JavaScript API (Table 2) calls that ultimately facilitate
the shown attack. Unlike orthogonal approaches [11, 36–38, 58], Wemby can uncover this bug and
assist in crafting exploits.
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8.3 Case Study: Zoom
We tested Wemby on Zoom due to its real-world relevance and complexity. Zoom’s Wasm code
processes audio and video frames, presenting a large attack vector. A memory corruption vulner-
ability could disrupt or hijack multiple clients’ browsers. Zoom uses non-standardWasm features
like SIMD and bulk memory operations, and its multithreaded architecture challenges existing
Wasm fuzzers [36, 58] and analysis tools [5, 11, 56]. Wemby successfully tackles these challenges,
demonstrating its effectiveness in analyzing, reverse-engineering, and fuzzing complex websites.

Our analysis reveals several architectural security implications in Zoom’sWasm implementation.
The core issue stems from Zoom’s memory management: media frames are stored directly in linear
memory (C-heap) for processingWebSocket payload data, while global objects for audio processing,
video handling, and desktop sharing functionality are maintained at deterministic addresses. This
predictable memory layout, combined withWasm’s inherent limitations in CFI and memory protec-
tion (see Section 3.2), exposes potential attack vectors. Specifically, these architectural choices make
the application susceptible to COOP-style [77] and data-only [41, 42] attacks. ThroughWemby anal-
ysis of Zoom’s 18 765 functions, we identified six security-critical functions, with three processing
unsanitized external data. Most notably, the Video_Try_Analysis function, responsible for video
frame decoding, processes every incoming video frame and presents a significant security risk due
to its continuous interaction with potentially malicious input.

The security implications are further amplified by Zoom’s configuration-dependent behaviors and
minimal input sanitization. Our assessment revealed that video data traversing Zoom servers under-
goes limited sanitization for performance reasons, allowing potential attackers to inject up to 1424
bytes into theWasm linear memory of all connected clients. This risk becomes particularly severe
because Zoom’sWasmmodule maintains a consistent memory layout across all clients, allowing an
attacker to reliably target the samememory addresses in every participant’s browser. The predictable
nature of thesememory patterns, combinedwith the processing of unsanitized data, creates a particu-
larly concerning attack surface that could potentially affect all connected clients in a conference call.

WedetectedamemorycorruptionbugwithWembyand responsiblydisclosed it toZoom.Thebug is
in the video encoding component: with a crafted video, the data used in theWasmmodule crashes the
application on the client side. The issue is a stack-based buffer overflow capable of overwriting the en-
tire linearmemory, and the execution halts onlywhen the payload attempts towrite beyond the linear
memory’s bounds. The payload fails to reach other clients because the application becomes unrespon-
sive before it can initiate the process of sending it to other participants. In line with ethical guidelines,
we refrain from injecting harmful data into Zoom servers to test our exploits, which could pose risks
to other users. Thus, we confirmWemby’s ability to fuzz even highly complexweb targets like Zoom.

9 Ablation Study
Due to the absence of standardizedWeb-Wasm benchmarksWeb-Wasm, we analyzed 76 randomly
selected websites from Section 4 that exhibit properties P1 to P2 and analyzed themwithWemby.
In addition, we subjected theseWasmmodules to fuzzing under two distinct configurations—one
without the analysis provided byWemby and another withoutWemby’s snapshot mechanism. This
setup serves as an ablation study, demonstrating the influence of Wemby in identifying reproducible
Wasm bugs, as well as the effect of fuzzing on the code coverage achieved by the fuzzer. Lastly, we
compare the performance ofWemby with that of WAFL [36].

9.1 Bug Finding Capabilities
In this experiment, wemeasured the precision ofWemby’s bug-finding capabilities. Wemby detected
2258 crashes in 510 functions across 17 modules. Multiple crashes can occur when the same bug
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triggers different oracles, like a stack-based buffer overflow vulnerability that can manifest as either
an out-of-bounds linear memory write or a stack-cookie overwrite. To address this, we deduplicated
these crashes by comparing their coveragewithin the same function, indicating shared vulnerabilities.
Overall, Wemby was able to detect 332 unique bugs.
Finding 1:Wemby’s analysis slashes false positives by a factor of six. Existing approaches
toWasm fuzzing lack crucial contextual information about the module’s original web embedding,
potentially leading to false positives that would nevermanifest in real-world conditions. For instance,
when fuzzing aWasm function that expects a pointer to a valid string buffer, existing approaches
might supply random integers as arguments. This causes the function to attempt memory access at
arbitrary locations, triggering crashes that would never occur in the actual web context where only
valid pointer values are passed. By faithfully incorporating the website’s state and context, Wemby
identifies genuine bugs while eliminating such spurious crashes.
Our evaluation demonstrates this distinction: Wemby’s fuzzer identified 2258 crashes across 17

Wasmmodules. Moreover, when we fuzzed theWasm functions without the analysis discussed in
Section 7.2—amethod similar to existing approaches [36, 58]—the crash count escalated significantly,
reaching 12 927 crashes, most of which are false positives. Furthermore, 29% of theWasmmodules
could not be fuzzed without Wemby’s analysis because they led to program crashes due to the
linear memory not being in a valid state, and pointer misclassifications caused immediate program
termination. These findings underscore thatWemby’s website analysis is an essential requirement
to fuzzWasmmodules from theWeb.
Finding 2: Bugs found withWemby are always reproducible. Our fuzzer reports bugs if either
our ASan bug oracle is triggered or if it violates theWasm runtime. However, as the browser lacks
Wemby’s oracles, onlyWasm runtime violations are directly visible in the browser. Thus, we focus on
the 1208 crashes that violate theWasm runtime and omit bugs found through our custom oracles for
this analysis. For each crash, Wemby generates a reproducer HTML file that instantiates theWasm
module, loads the snapshot of the linear memory, and calls the vulnerable function with the crashing
input from the fuzzer, replaying the bug in the browser. We can confirm that everyWasm sandbox
violating bug found byWemby is reproducible in this fashion.

9.2 Coverage
In this experiment, we evaluated the coverage improvement by comparing the code covered by
Wemby with and without snapshots. While Fuzzm andWAFL require instrumentation of theWasm
module to receive feedback coverage, we can use AFL++’s default coverage metric, which counts the
number of basic blocks covered by the fuzzer. This enables us to precisely measure the code coverage
ofWemby without any instrumentation of theWasmmodule.
Finding 3: Snapshots boost code coverage by 46% on average. Our results indicate that it
is better to integrate the state of the linear memory during the execution of the Wasm function.
Compared to existing fuzzers [36, 58], which lack such integration, Wemby’s approach covers, on
average, 46%more code. This is because existingWasm fuzzers cannot pass fuzzing barriers imposed
by the state, for example, Figure 3 line 17. As the experiments indicate, Wemby overcomes these
barriers, allowing for a holistic security analysis of Wasmmodules on theWeb.

9.3 Fuzzing Performance
We compare Wemby’s fuzzing performance to WAFL [36], as Fuzzm [58] is not included in our
evaluation due to compatibility issues1. WAFL and Fuzzm are fuzzers designed for standaloneWasm

1See https://github.com/fuzzm/fuzzm-project/issues/5.
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Fig. 10. Executions per second per core achieved byWAFL andWemby. The X-Axis abbreviates the function
names of the ZoomWasmmodule.

applications utilizingWASI that require targets to have a single entry point.Web applications neither
utilizeWASI nor define a main method, rendering these fuzzers incompatible. To nevertheless enable
a comparison, we generate synthetic main methods. Here, we leverage our web application analysis
(see Section 7.2) to identify relevant entry functions. We then designate these functions as the main
entry point for the other fuzzers.We thenmodify the targets to includemainmethods that read input
from stdin and invoke one of the identified functions with the input as an argument, making them
compatible withWAFL.
Finding 4:Wemby significantly outperformsWAFL. Figure 10 shows the execution speed per
core achieved byWemby andWAFL, respectively, running on the motivating example (mcap) and
functions fromZoom’sWasmmodules. On averageWemby’s fuzzer is 232.60 times faster thanWAFL.
Wemby has about three orders of magnitude more executions per second, comparable to native
fuzzing solutions. This speed-up results from our design choice of compiling theWasmmodule to
native code (cf. Section 7.3) instead of instrumenting the VM. Additionally, after reviewing these
results,we found that the number of false alarms (see Finding 1) further impedesWAFL’s performance
because each crash results in a restart of theWasm VM, slowing downWAFL. SinceWemby omits a
Wasm VM, it does not suffer from this issue. Hence, besides being unable to fuzz complex targets,
WAFL’s low speed further limits practical vulnerability analysis.

10 RelatedWork

Large-ScaleWeb Studies. Assessing the security of theWeb at large is mainly done via crawling
studies. These cover awide range of security-related aspects, such as the prevalence of reflected [7, 60,
64, 90] and stored Client-Side XSS [85], employed protectionmechanisms [52], DOM clobbering [49],
Client-SideCross Site Request Forgery [48, 50] or prototype pollution [47].Additionally,more general
aspects of the web have been studied, such as compliance to the HTML specification [35], JavaScript
library usage [70], and how third-party JavaScript interacts hinders security mechanisms [84].
(Ab)use ofWebAssembly. AmongWasm’s first uses and most widely studied aspects was its role
in cryptojacking [40, 53, 68]. Popularized in 2018, website operators implemented cryptocurrency
mining functionality inWasm and used the computing resources of unsuspecting visitors. Similarly,
Wasm has been shown to be able to obfuscate JavaScript malware by Romano et al. [75]. More
generally, the first study on its prevalence on the web at large was conducted byMusch et al. [67].
Wasm has since found adoption in native applications as well, for example, to sandbox untrusted
code [9]. Similarly, Firefox also employsWebAssembly to sandbox untrusted third-party libraries [69].
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WasmBinary Analysis. Previous work on assessing the security of Wasm code focuses onWASI
applications. Fu et al. [27] implement taint tracking, Stiévenart et al. [86] and Brito et al. [11] develop
static analysis frameworks.More generally, SnowWhite [55],WasPur [76] andWasmRev [43] attempt
to recover high-level types to aid further analysis, and Lehmann et al. [57] showhow aspects ofWasm
make call-graph construction difficult. Eunomia [38] and SeeWasm [37] are symbolic execution
engines. Wasabi [56], Walrus [93], and Wasm-R3 [5] are dynamic analysis frameworks that can
instrumentWasm code to perform diverse execution analyses.WAFL [36] and Fuzzm [58] fuzzWasm
code but are unsuitable for browser targets as they ignore the website environment. In this paper, we
address these browser-specific challenges.
WasmHardening and Runtime Reliability. Likewise, current research on hardeningWasm
also focuses onWASI. PKUWA [59] uses Intel MPK to split theWasm linear memory into domains,
confiningmemory errors into function-scopedmemory areas. Further, there is research that analyzes
not the Wasm code itself but the security of the sandbox, e.g., using formal verification [45, 46],
or re-compilation using Rust’s verification [9]. Fuzzing the Wasm runtime, as demonstrated by
WASMaker [14], Wapplique [98], andWADIFF [99], is a promising research direction to enhance
theWasm SFI further. While this enhances runtime robustness, it cannot detect memory corruption
withinWasm binaries. Ultimately, these errors can evade SFI, as demonstrated by this work.
Library Fuzzing. Fuzzing is a popular technique to assess the security of software [8] and hard-
ware [62] and to find impactful vulnerabilities. Grammar-based input fuzzers [23, 30, 34, 96] infer
invariants in well-structured data to produce impactful test cases. Recent research has focused on
fuzzing targets on different platforms [18, 44, 61, 73, 82], which share properties with the attack
surface ofWasmmodules. In this paper, we use AFL++ [25] as a fuzzer and leave more sophisticated
fuzzing approaches for future work.

11 Conclusion and Summary
In conclusion, our research reveals a significant security risk associated with the widespread trust
in data interfacing withWasmmodules, a practice adopted by over 29 411 websites. This trust, when
combinedwithmemory corruption errors, can lead to remote code execution, presenting a new threat
model. We detected 2782 domains vulnerable to this threat model. To address this risk, we present
Wemby, the first and efficient approach for analyzing WebAssembly-powered websites. Wemby
outperformsexisting solutions indetecting remotely exposedmemory corruption errors. Its advanced
tracing and taint-tracking capabilitiesmake it a valuable tool for reverse-engineering complex, closed-
source targets. Wemby revealed several security-critical functions in websites, including memory
corruption bugs, demonstrating its effectiveness. This work emphasizes the need for robust security
measures inWebAssembly-powered websites and presents a superior solution withWemby.
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