
Parse Me, Baby, One More Time: Bypassing HTML Sanitizer via Parsing Differentials

David Klein and Martin Johns
Technische Universität Braunschweig

{david.klein,m.johns}@tu-braunschweig.de

Abstract—Websites rely on server-side HTML sanitization to
defend against the ever-present threat of cross-site scripting
attacks. Parsing arbitrary pieces of markup to assess whether
they contain an exploit payload is far from trivial. This
complexity leads to divergences between the parsing results of
the sanitizer and the user’s browser. These so-called parsing
differentials open the door for the unexplored category of
mutation-based attacks. Here, an attacker abuses the sanitizer’s
incorrect HTML parser to either directly bypass it or coerce it
to transform benign markup into a dangerous exploit payload.

In this work, we study the prevalence of such parsing
differentials and their security impact. To this end, we built a
generator for HTML fragments that are difficult to parse and
evaluated how 11 sanitizers across five programming languages
deal with such inputs. We found that parsing differentials are
commonplace, as each assessed sanitizer has at least several
functional deficiencies leading to overzealous removal of benign
input. Even worse, we were able to automatically bypass all
but two of the 11 sanitizers, painting a dire picture of the state
of server-side HTML sanitization.

1. Introduction

There are two frontiers to protect against cross-site
scripting (XSS): on the client and on the server-side. Tra-
ditionally, client-side XSS protection has been seen as the
difficult one, as the client offers no protection mechanisms,
and writing custom sanitization code is notoriously error-
prone [1]. Google, for example, directly acknowledges this
fact in their report on Trusted Type adoption: “More than
half of the DOM XSS root causes were due to bugs in HTML
sanitizers” [2]. The academic community has also mainly
focused on client-side XSS, from prevalence scanning [3–
8] to studying employed protection mechanisms [1, 9], the
body of work is extensive. Conversely, the exploration of
server-side XSS remains notably underrepresented. Large-
scale server-side security scanning is comparatively scarce,
primarily due to ethical and legal challenges [10].

Due to modern server-side web development’s heavy
reliance on frameworks, one might assume robust defense
mechanisms are in place. Such defenses could come in the
form of automatic sanitizer placement, as suggested in past
work [11–13]. However, after inspecting the documentation
of 11 popular web frameworks about their XSS protections,
we found this assumption to be lacking.

Instead, we propose to take a step back and ask the
question: Is server-side HTML sanitization even possible
without mangling benign input?

Over the last years, the security community realized that
accurate HTML sanitization is only possible with detailed
information on where in the website the sanitized result is
inserted [14]. While this information is possibly available for
client-side sanitization, as the currently proposed Sanitizer
API shows, it is out of reach for server-side sanitizers. This
context sensitivity influenced the design of the sanitizer
API, which does not allow to perform a string-to-string
transformation [15], declaring it generally unsafe to do so.
On the server, this is the only type of transformation available,
as ultimately, the sanitizer’s output ends up in an HTTP
response, which is text-based.

Server-side sanitization routines face an additional chal-
lenge. To accurately sanitize an HTML fragment, that is,
only to remove the actively dangerous part, a sanitizer has
to parse it in the same fashion as a browser. A cursory
glance at the HTML specification suffices to highlight the
complexity of writing such a parser. Even if the sanitizer
implements the specification perfectly, this does not suffice
either, as browsers can and do diverge from the specification.
Therefore, to accurately sanitize, a sanitizer would have to
parse its input exactly like the user’s browser would. This
requires information on the client’s browser, the parsing
mode, and the exact injection context to adjust the sanitizer’s
behavior accordingly. This is not supported by any server-side
sanitizer. This problem is further aggravated by browsers
accepting invalid HTML input. Instead of aborting the parsing
process, they try to rewrite and correct the input, i.e., mutating
it and changing the HTML structure in the process. While
this behavior is partially specified, it adds another difficulty
for the authors of parsing and sanitization routines: Their
software would need to support the same behaviors to assess
the security impact of HTML fragments correctly. Otherwise,
it opens the door to mutation-based XSS vulnerabilities.

These issues raise two interesting questions: Is it feasible
to write a sanitizer that is both accurate, i.e., does not mangle
benign content, and secure? And how do popular open-source
sanitizing libraries fare in this respect?
These are the questions we will answer in this work.

To assess the prevalence of parsing divergences, we first
analyzed the HTML specification, selecting HTML tags and
edge cases that might lead to interesting parsing behavior.
We then present MutaGen, an HTML fragment generator
with a special focus on fragments prone to mutations, and

evaluate such fragments on our testbed. Here, we sanitize
each generated fragment with 11 different sanitizers and
evaluate their outputs in all major browsers. We also record
the DOM-like structure resulting from both the sanitizers as
well as the browsers’ parsing processes. This allows us to
automatically assess if and where parsing behavior diverges
and how this can lead to sanitizer bypasses. We detect severe
parsing discrepancies between the evaluated sanitizers as
well as between the major browsers.

Our contributions are the following:
• MutaGen: A generator for HTML fragments prone to

mutations during parsing.
• An analysis framework that detects diverging parsing

behavior between sanitizers and web browsers.
• We then use these building blocks to assess how 11

sanitization libraries are affected by parsing differentials.
We found new bypass vectors for all but two and parsing
deficiencies in all of them.

The remainder of this paper is structured as follows: First,
we provide a recap on the required background in Section 2.
We then detail the design of MutaGen and our evaluation
and analysis framework (Section 3), followed by an overview
of our findings and the efficacy of the presented approach
in Section 4. Afterward, we discuss some major takeaways
and mitigation approaches (Section 5) and related work
(Section 6) before we conclude in Section 7.

2. Background

In this section, we first introduce the intricacies of
HTML parsing. Afterward, we discuss (mutation) cross-
site scripting and how sanitization can protect against such
attacks. Lastly, we showcase how parsing differentials lead
to HTML sanitizer bypasses.

2.1. Complexities of HTML Parsing

HTML is the premiere markup language on the web,
supported by all browsers. However, its evolution has not
been straightforward. This is acknowledged in the official
specification, which states “that many aspects of HTML
appear at first glance to be nonsensical and inconsistent.” [16].
Despite being seemingly simple, parsing and rendering
HTML is a very involved process. From a visual point
of view, one would assume that parsing HTML and XML
has many commonalities. They both derive from SGML
and consequently share most syntax. Modern XML parsers
offer two profiles: SAX-based [17] parsing and DOM-based
parsing. For the latter, the whole document is parsed into
a tree structure and returned at once. SAX parsing has a
lighter memory footprint as it is a stream-based parsing
approach. As the parser reads the input, it emits parsing
events (e.g., opening tags) as it comes across them. One
would assume the same is possible for HTML, but this would
be a misconception. HTML parsing is divided into two stages:
tokenization, i.e., turning incoming bytes into tokens, and
tree construction, which builds a Document Object Model
(DOM) tree from said tokens.

A stream-based HTML parser, i.e., a parser that emits the
result of each step in the tree construction stage, can never
be specification-compliant. Scattered across the specification
are points where the parser has to rearrange previously
processed elements. For example, inside a table, if the
parser encounters a tag that is not allowed to occur in
this position, the foster parenting algorithm is invoked to
rearrange the DOM and rehome the offending tag [18]. For
the input, <table><div><tbody> a stream parser would
emit the opening tags table, div and tbody. As the div
tag is not a valid child of table, the parser invokes the
foster parenting algorithm to correct the input. This results
in <div></div><table><tbody>, i.e., it moves div
in front of the opening table. Consequently, a stream
parser has to invalidate already emitted events, defeating its
purpose. Thus, accurately parsing HTML is only possible in
a single pass. This complexity is a direct result of the desire
to be always able to render a website, even if it violates
the HTML specification in one way or another. Instead
of rejecting invalid markup, modern browsers attempt to
repair the input and display it regardless. This repair step
involves the aforementioned DOM transformations, such as
foster parenting, effectively mutating the input. Websites
violating the specification are commonplace even today [19],
preventing browser vendors from tightening the parsing
process without breaking the web.

Another noteworthy aspect is that modern browsers sup-
port two HTML parsing algorithms, document and fragment
parsing [20]. Document parsing is the regular parsing mode
which processes a whole document. The fragment parsing
mode instead relies on a context element and returns a DOM
fragment, i.e., a tree of nodes rooted at the context element.
It is, for example, used for .innerHTML assignments.
Differences in the behavior of these two modes are another
source of potential issues. A well-known difference between
the two parsing modes is the handling of script tags,
which are only executed in the document parsing mode.
The HTML standard mandates support for both of these
two parsing algorithms. However, modern browsers might
implement several parsers for each parsing mode. Chromium,
for example, has two fragment parsing algorithms. The
fastpath parser is used if the fragment only contains tags that
do not require DOM rearrangements, and upon encountering
such a tag, it bails out to the regular one, which supports the
whole tag range [21]. By not considering all the intricacies of
HTML, the fastpath parser is generally faster. To top things
off, HTML allows embedding so-called foreign content to
support increasingly complex use cases. Both typesetting
instructions for math formulas (via MathML [22]) and vector
graphics (via SVG [23]) can be directly inserted into HTML
documents. As they also share HTML’s ancestry, they also
share some syntactic structure (and even tag names at times),
but additional complexities arise due to this combination.

Example. Consider the input from Figure 2a, which
serves as the running example throughout this section. When
assigning it to the .innerHTML attribute of a div element,
Chromium parses the first img tag as an HTML element

math

iframe

img

div

img

(a) Chrome parsing the running example

math

iframe

#text

context

img

(b) Sanitizer parse tree

math

iframe

img

div

(c) Chrome parsing the result

Figure 1: Parsing differential leading to sanitizer bypass

1 <math> <iframe> ↪→

(a) User input

1 <math> <iframe> <img src=x
onerror=f()></iframe></math>↪→

(b) Sanitized result

Figure 2: Payload before (2a) and after (2b) sanitization.

and adds it as the context nodes (i.e., the div element), first
child. Then, upon encountering the math tag, the parser
switches to the MathML mode (i.e., nodes are added with
their namespace set to MathML) and adds math as the
second child. The following iframe tag is also parsed in
MathML mode and added as the first child of math. Next,
the second img is processed. It is among the list of elements
that cause the parser to switch back to the HTML [24]. To
do so, it closes the currently open elements (i.e., iframe
and math) and inserts the img tag as the context’s third
child, resulting in Figure 1a. HTML nodes are depicted in
blue, and those in the MathML namespace are in yellow.

2.2. Cross-Site Scripting

Cross-site scripting (XSS) is the most common vulnera-
bility class on the web. The goal behind an XSS attack is
for the attacker to execute code within the security domain
of the website. This allows them to exfiltrate data such as
cookies or inputs, perform actions on behalf of the user,
or manipulate the website’s content to trick the user into
performing unwanted actions. An XSS vulnerability requires
the attacker to be able to control some parts of the markup
of the website. Due to the fact that in HTML, there is no
distinction between markup and data, at every point where
user-controlled data ends up on a website, there is a potential
XSS vulnerability.

Consider a website allowing users to leave comments, a
basic form of community building. If a malicious user puts
in the running example from Figure 2a, every other visitor’s
browser parses the supposed comment as in Section 2.1. The
example string contains two img tags, both referencing an
unavailable destination. Upon failing to load the nonexisting
images, the browser executes their error handlers and calls
f() twice, highlighted by the warning sign in Figure 2a.
The call to f happens inside the website’s origin, giving the
attacker complete access to each visitor’s session.

2.3. Sanitization

To prevent XSS, special care is required to ensure user
input is free from unwanted HTML markup. In this case,
unwanted means tags executing code (such as the img tag
in the example) but can also include tags changing the
website’s layout in an undesirable fashion. The process of
removing such unwanted markup is called sanitization. To
do this accurately, the sanitizer has to determine whether a
specific piece of text includes markup that might execute
code. A common approach to sanitization is to parse the
input according to the HTML specification and to operate
on the resulting DOM tree. The sanitizer then traverses the
DOM and removes or transforms nodes according to, e.g.,
an allowed list of harmless tags or a block list of tags to
remove. Afterward, the sanitized DOM is serialized back
into its textual representation and returned to the caller.

For example, a sanitizer configured to allow both math
and iframe tags and to remove all img tags. When
processing the running example from Figure 2a, its parsing
result is depicted in Figure 1b with a synthetic node as its
root. To remove harmful tags, it considers each node in the
tree and removes the first image node, highlighted in red. All
other nodes (colored green) are in its allow list (text nodes
implicitly) and, therefore, stay untouched. The serialization
step again traverses the tree and converts each node to its
HTML representation. Here, the input is usually cleaned
beyond removing XSS payloads. As depicted in Figure 2b,
the sanitizer adds closing tags that were omitted from the
input.

Sanitization stands in contrast to encoding, another pop-
ular form of ensuring attacker-controlled input is free from
markup. The difference is that sanitization allows certain tags
to pass through and only removes (or encodes) potentially
dangerous parts of the string. Encoding, on the other hand,
replaces control characters with their escaped form. If a
string is inserted in the HTML context, e.g., inside a div
tag <div>${name}</div>, it would suffice to replace all
control characters with their character references. Turning
<script> into <script> would reliably prevent
injection attacks in this case. Encoding should be used if the
user shall not be able to influence the markup while saniti-
zation allows the input to contain markup. They, therefore,
serve different purposes. We only focus on sanitization; the
security of encoding-based protection schemes is outside the
scope of this work.

2.4. Mutation Cross-Site Scripting

Mutation Cross Site Scripting (mXSS) is a subclass of the
generic XSS vulnerability group popularized by Heiderich
et al. [25]. Such a vulnerability occurs if an HTML fragment
is parsed, serialized, and yields a different result upon being
parsed again. Initially, this was limited to cases where, due
to updates to the DOM, the browser’s HTML parser would
parse an HTML fragment a second time. These vulnerabilities
were based on problematic behavior of the browsers, i.e.,
bugs, and were resolved there.

However, over time, the vulnerability class mXSS also
started encompassing what Heiderich called “mutation based
attacks”. Here, the initial parsing and serialization steps
happen inside a sanitizer, and only the second parsing
step occurs inside the browser. For such a vulnerability to
manifest, the combination of HTML parsers of the sanitizer
and the browser must diverge in a way that the sanitizer
can be bypassed. This happens if, for example, the sanitizer
parses the part of the input containing the exploit payload as
part of a text node and returns it unchanged. If the browser,
upon parsing the sanitizer’s output, parses the assumed text
content as markup, the payload is executed, introducing an
XSS vulnerability.

A sanitizer affected by a parsing differential could parse
the example as shown in Figure 1b. We detail the differences
in the parsing and how this opens the door to a bypass in
the following. The sanitizer is unaware of the namespace
transition rules for foreign content and considers all elements
as if they were parsed according to the HTML parsing rules.
In HTML mode, everything inside the iframe tag is parsed
as text. If the sanitizer simply echoes back text nodes, the
second img tag passes through unmodified.

Upon parsing the output in Chromium, the iframe tag is
parsed as a custom MathML tag, and when encountering the
img tag, the parser switches back to HTML mode, closing
all open MathML tags in the process. The XSS payload is
thus lifted out of the iframe and moved as a direct child of
the context element, causing code execution upon evaluation,
shown in Figure 1c. Thus, mutation-based bypasses are
possible whenever there is a difference in parsing behavior
between the browser and sanitizer. These kinds of bypasses
are the focus of this work.

3. Uncovering Parsing Differentials
To detect parsing differentials and mutation-based sani-

tizer bypasses, we built a testing framework consisting of
three stages: Input generation, sanitization, and evaluation.
The framework is depicted in Figure 3. We made the source
code for the testing framework, i.e., MutaGen and the
testbed, available online [26]. We now first detail the results
of analyzing the HTML specification and then detail each
stage of our testing framework in the following.

3.1. HTML Analysis

With the goal of generating mutation-prone HTML
fragments in mind, we first analyzed the HTML specification

MutaGen

Browser Evaluation Testbed

Central Database

Chromium Firefox WebKit

Sanitizer Runner

PHP

Ruby

Java

JavaScript

.NET

Figure 3: Sanitizer Evaluation Setup

as well as past sanitizer bypasses based on parsing differen-
tials [27–30]. Based on inspecting the HTML element [31]
semantics and their corresponding parsing specifications [32],
we collected elements with complex parsing rules. The
element specification provides a general description of all
elements, including restrictions on where they can occur,
whether closing tags can be omitted, and their content
model. The content model of an element specifies what other
elements are allowed as its children. The parsing specification,
on the other hand, describes how the parser constructs the
DOM tree.

An example of a tag with complex parsing rules is the
iframe tag. It is noteworthy as its element specification
and parsing specification disagree. Its content model is
nothing [33], stating the element “must contain no Text
and no element nodes” [34] but the parsing specification
instructs to parse its content as text, directly violating the
content model. We identified a total of 47 tags, which can
be divided into the following groups of elements: 1) Those
with restrictions on their content (e.g., select can only
contain specific child elements) 2) restrictions on where
they can occur (e.g., tr can only occur inside a table)
3) constraints on how often they can occur (e.g., there can
only be one title while forms can not be nested) 4) with
disagreements between parsing and element specification
(e.g., iframe) 5) causing namespace transitions (e.g., svg
or math) 6) and lastly those that are deprecated (e.g., xmp,
which used to display HTML code without executing it) The
full list of tags with reasoning for their selection is provided
in Table 7.

The parsing specification contains a “parse errors” [35]
section, which is an additional source of parsing quirks we
identified as potentially challenging to implement. While the
specification explicitly allows a parser to abort the parsing
process upon encountering such an error, no parser does this.
Instead, they emit erroneous output or rewrite the input. The
identified quirks include 1) incorrect comments 2) invalid
attributes 3) attributes inside closing tags.

These identified complexities are the foundation for our
generation approach.

Generation Serialization

Payload(Img_tag)

Close_tag
(NoScript, Prepend)

</noscript>

Enclose_tag_attr (Div,
Id, Enclosed(Double))

<div id="</noscript>
">

Open_tag
(NoScript, Prepend)

⊥

<noscript>
<div id="</noscript>

">

Figure 4: Simplified Payload Generation and Serialization.

3.2. MutaGen: HTML Fragment Generator

The basic idea behind MutaGen is to approach the
generation process iteratively. We first select an initial
payload P , i.e., a piece of HTML triggering JavaScript
execution, and subsequently extend P with surrounding
HTML structure. The initial payload is as basic as possible
by design. Generally, two kinds of injection vectors lead to
XSS: tag-based and attribute-based injections. Consequently,
we chose two payloads (i.e., script and img tags) to
represent these categories. These are the most well-known
payloads for their respective categories. Hence, we expect
every sanitizer to handle them. During the HTML analysis,
we noticed that the specification instructs parsers to rewrite
image to img tags. This behavior represents a third class,
parsing quirks, and thus, we added image to the set of
initial payloads to cover this class of behaviors as well. While
more advanced payloads may uncover additional bypasses,
detecting vulnerabilities due to, e.g., a sanitizer missing
specific event handlers in a block list was not the focus of
this work.

Once an initial payload is selected, MutaGen randomly
selects transformations which, when applied to the current
payload, modify it. An example of such a transformation is
to prepend an opening tag such as div, i.e., transforming
P into <div>P . Upon reaching a predefined limit on the
number of transformations (set to 25 for our experiment) or
selecting the termination transformation (denoted as ⊥), the
generation is complete. The ⊥ transformation allows us to
generate payloads of varying length, as always applying 25
transformations results in payloads of uniform length. We
then check that the generated payload is unique, i.e., has not
been generated by a prior run, and that it is not entirely made
up of whitespace or closing tags. Such a payload can never
cause interesting behavior, as closing tags without opening
tags are discarded. If both conditions hold, we serialize it to
its string representation and store both its abstract as well
as its textual representation in a central database.

This approach allows us to trivially add transformations
that alter the whole accumulated payload, e.g., to perform
XML encoding. We implemented the HTML fragment
generator in slightly over 1,100 lines of OCaml code; it
manipulates payloads with 23 transformations, most of them

Table 1: Examined Sanitizing Libraries

Name Version Total Downloads Language Vulns.

DOMPurify (*)
2.3.10

399,001,216

JavaScript ‡

1
3.0.3 1

sanitizer 0.1.3 41,063,147
†

google-caja-sanitizer 1.0.4 242,850

sanitize-html 2.7.0 276,882,692 0
HtmlSanitizer 8.0.601 19,800,000

.NET
2

HtmlRuleSanitizer 1.6.0.1 306,100 2
Typo3 html-sanitizer 2.0.15 1,950,185 PHP 4
rgrove/sanitize 6.0.0 60,928,006

Ruby
1

loofah 2.21.3 396,621,861 0
AntiSamy 1.7.3

No data available Java
3

JSoup 1.16.1 2

*: jsdom version 19 and 22, †: Based on the same code base, both abandoned;
therefore vulnerabilities not broken down, ‡: Retrieved with https://npm-stat.com

parameterized. For example, the Enclose_tag_attr
transformation in Figure 4 is parameterized over the tag,
the attribute’s key, and quotes. The full list is provided in
Table 6 and their parameters in Section A.1.

Example. One HTML parsing aspect we discovered as
problematic for most sanitizers is correctly terminating
noscript tags. Figure 4 details a simplified generation
run yielding a payload capable of generating a payload
that bypasses several sanitizers. On the Generation side in
Figure 4, a list of transformations is created, starting from
an initial payload, here an img tag. With each subsequent
transformation, MutaGen adds surrounding structure to the
payload. First, it prepends a closing noscript tag and then
encloses the accumulated payload inside the double-quoted
id attribute of a div tag. Next, an opening noscript
tag is prepended again, and the generation terminates with
the ⊥ transformation. This yields the list of transformations
given on the Generation side in Figure 4 top to bottom. To
hand this sample to a sanitizer, it first has to be serialized
into HTML code. Each step of this process is shown on the
right side (captioned Serialization) of Figure 4.

3.3. Payload Sanitization

For each generated fragment, we now want to analyze
how different sanitizers process it. We selected the sanitizers
in our testbed by searching the package repositories of
JavaScript, .NET, Ruby, PHP, and Java for popular server-
side HTML sanitizers. We then inspected their source code
to determine whether they use an HTML parser that we can
access to retrieve its internal state.

Using an actual HTML parser is a necessary prerequisite
to be affected by parsing differentials, i.e., to be in scope for
our work. Therefore, we did not include any sanitizer that
simply cleans the input based on, e.g., regular expressions.
Attempting to process HTML via regular expressions is
problematic in its own right but not the focus of this
work. We refer the reader to [1, 9, 36–38] for security

https://npm-stat.com

assessment of such sanitization approaches. This allows us
to focus on detecting HTML parsing divergences and their
effects on sanitizers. To perform a meaningful analysis
of different parsing behaviors, we also require access to
their internal state. That is, how did the underlying HTML
parser understand the input the sanitizer attempts to clean?
This internal parsing state is not made public in any of the
considered sanitizers. Therefore, we added functionality to
extract it. This was either done by setting appropriate hooks,
e.g., for DOMPurify, or by modifying the code, e.g., for
Google Caja-based ones, while keeping the sanitization logic
untouched. Thus, for every sanitizer invocation, we store
a DOM-like structure (representing the sanitizer’s internal
state) together with the sanitizer result. This allows us a
meaningful comparison between sanitizers. This resulted in
11 sanitizing libraries across 5 programming languages. Their
exact version numbers as well as additional meta information,
are detailed in Table 1.

3.3.1. Sanitizer Configuration. Most of the tested sanitizers
allow for a wide range of configuration options. Those usually
include allowing or restricting additional tags, restricting
which attributes are allowed, and so on.

We tested each sanitizer in its default configuration but
also considered a more lenient variant, explicitly allowing
all tags and attributes generated by our tool if such a
customization is possible. loofah, a sanitizer for Ruby, or
both Caja-based ones do not allow for such customizations.
Consequently, they are only tested in the default configura-
tion.

We did not attempt to enforce misconfigurations. One
sanitizer in our test set, namely sanitize-html, requires setting
an aptly named flag (called allowVulnerableTags) to
enable some tags generated by MutaGen. We did not set
these, as the documentation clearly states that setting them
renders the sanitizer pointless. Instead, we limited ourselves
to allowing tags via the regular mechanisms.

Each generated payload was consequently sanitized by
every sanitizer from Table 1 in both their default and relaxed
configuration. Their outputs were inspected to check whether
they still contained a call to our reporting function, and if that
was the case, they were marked for evaluation. In addition,
every generated payload was also marked for evaluation
without sanitizing it first.

3.4. Payload Evaluation

While the sanitizer’s parsing state is sufficient to deduce
parsing differentials between sanitizers, finding bypasses
requires evaluating the output in a real browser. To do this,
we leveraged the browser automation framework Playwright
in version 1.27.0. It automates running Chromium, Firefox,
and WebKit in versions 107.0.5304.18, 105.0.1, and 16.0,
respectively. Our framework evaluates each sample marked
for evaluation in each browser and parsing mode combination.
That is, to ensure both document and fragment parsing modes
are evaluated, each marked sample is evaluated twice. For
fragment parsing, we assign the payload to innerHTML of

Table 2: Number of Evaluated and Executed Samples

Sanitizer Evaluated JS Executions
Default Lax Default Lax

None 12,000,000 855,290

DOMPurify 1,770,812 2,210,713 0 341

DOMPurify (jsdom19) 1,518,562 1,716,177 31 154

sanitizer 2,721,962 4,971

google-caja-sanitizer 2,866,299 5,354

sanitize-html 1,347,494 4,330,265 0 0

HtmlSanitizer 7,512,576 7,652,333 0 966

HtmlRuleSanitizer 607,496 7,269,990 5,080 34,384

Typo3 11,705,381 11,710,159 4,754 52,214

rgrove/sanitize 1,816,383 4,988,545 0 2,178

loofah 4,452,547 0 0

AntiSamy 5,473,627 6,696,708 7 2,116

JSoup 5,970,206 8,132,379 0 13,265

the document’s body element, while for document parsing,
we directly insert it into the body of the page. This allows
us to detect differentials between the parsing behavior of the
two algorithms or bypasses that only manifest in either of
them.

As modern web browsers are highly complex pieces of
software, the evaluation step is rather time-consuming. To
ensure that – even under heavy system load – we do not
miss any calls to the reporting function, we waited for 75ms
after inserting the payload into the page. Together with the
surrounding setup code, such as opening a new page inside
the browser, evaluating a single payload took about 90ms.

4. Parsing Differentials: Prevalence and Impact

We generated 12 million unique payloads for this study.
The generation, sanitization, and evaluation pipeline took
14.5 days in total, running concurrently on a server powered
by an AMD EPYC 7702P 64-Core CPU and 512GB of
main memory. During the evaluation, each call to the
reporting function from our payloads was recorded, and the
corresponding sample was marked as causing code execu-
tion. The total numbers of samples marked for evaluation
and samples causing JavaScript execution per sanitizer are
provided in Table 2.

The number of evaluated samples already gives a hint
about different strategies employed to clean input. Sani-
tizers with few evaluations (e.g., sanitize-html or DOM-
Purify) remove problematic parts, while others, such as
the Typo3 sanitizer tend to keep the basic structure in
place. An example to showcase this behavior is the payload
<textarea><script>f(). One strategy is to delete
the content of textarea, e.g., employed by sanitize-html,
which in turn deletes the call to our reporting function, f().
A second strategy, for example used by DOMPurify, is to en-
code the content of textarea, i.e., turning <script>f()
into <script>f(). Both approaches prevent the
execution of the XSS trigger but have tradeoffs in terms of
usability. Any benign content of such a textarea tag is

equally deleted when applying the first strategy. There is,
however, no correlation between employing either strategy
and being more susceptible to bypasses. HtmlRuleSanitizer,
sanitizer and google-caja-sanitizer are among those with the
fewest evaluated samples in their default configurations but
have the most samples with JavaScript execution.

Please note that payloads causing JavaScript execution
after sanitization are not a direct subset of those executing
JavaScript without sanitization. In total, 875,133 payloads
were executed at least in one configuration. Without applying
sanitization first, 855,290 payloads did cause JavaScript
execution. This means that 19,843 payloads did not execute
on their own but required the sanitization step to turn them
from a benign into a dangerous payload.

One would expect the number of executed payloads to
be equal across browsers. This is not the case. Chromium
executed 862,780 and 668,897 in document and fragment
parsing mode, respectively, the numbers are fairly similar for
WebKit with 863,071 and 668,893 executions. Both browsers
originate from the same code base, so similar behavior is
expected. For Firefox, however, the results are significantly
different. It executed 858,523 payloads in document and only
497,941 payloads in fragment parsing mode. The reasoning
for this significantly different number of executed payloads
rests in a deviation from the specification for Firefox, which
we detail in Section 4.4.

Note that the number of executed samples for fragment
parsing is lower across the board. This is expected, as
payloads using script tags as code execution triggers
never execute in fragment parsing mode.

All payloads that executed JavaScript despite having
been sanitized were marked as bypasses and consequently
analyzed. We filtered them for common root causes (i.e., two
payloads containing the same issue and different surrounding
markup) and disclosed the vulnerability to the respective
maintainers. This was greatly aided by us storing the internal
parsing result of each sanitizer, as it allows us to quickly
asses what root causes led to the bypass. All bypasses found
over the course of this study are summarized in Table 3. We
did not break down the issues found in the two Caja-based
sanitizers for brevity, as they are both unmaintained.

We were able to bypass all evaluated sanitizers except
sanitize-html and loofah. 6 out of 11 sanitizers were af-
fected in the default configuration, which tends to be rather
restrictive. For three additional sanitizers, we only found
bypasses in the more permissive configuration. However,
due to each website having unique needs in terms of tags to
allow, we assume that adjusting the default configuration is
commonplace. This can be seen when looking at libraries
such as AntiSamy, which ships with configurations taken
from popular websites such as Slashdot or eBay. The
provided configurations contain very different allow lists,
with the eBay one, for example, being very permissive, even
allowing tags such as noscript.

While the relaxed configuration set by us is extremely
permissive, all bypasses found by us usually only require
adding one or two tags to the allow list, i.e., only a subset
is needed. Testing these different subsets independently,

context

div

#text img #text

Figure 5: DOM structure of <div>HTML

however, would lead to an infeasible number of payloads to
evaluate. Therefore, we set a very permissive configuration
in which we minimized the changes required for the specific
bypass before reporting them.

4.1. Prevalence of Parsing Differentials

The reason for using an HTML sanitizer is to allow
the user to preserve some form of user-provided markup.
Suppose one wants to ensure input does not influence the
website’s markup at all. In that case, the safe way is to
simply encode the input (cf. Section 2.3), ensuring only text
content ends up in the final document. Therefore, we assume
that users of these sanitizers expect them to remove only
the actual XSS trigger and other forbidden elements while
preserving benign HTML structures as is. To do this, the
sanitizer’s parsing result has to be as close to the browser’s
as possible. Otherwise, benign parts of the DOM might get
removed, degrading the website’s functionality.

To assess the similarity between parsing results, we first
select a metric to compare DOM trees.

4.1.1. Bag of XPaths Similarity Score. The Bag of XPaths
metric [39] is one way to calculate the similarity between
two websites, i.e., DOM trees. Here, each document is
converted into a set of XML Path Language (XPath) ex-
pressions, one for each leaf node in the DOM. For example
the fragment <div>HTML has the DOM structure
pictured in Figure 5 and is converted into three XPath ex-
pressions: /div[0]/text[0], /div[0]/img[0], and,
/div[0]/text[1]. To calculate the similarity between
two documents D1 and D2, we first compute the set of
XPaths for both, resulting in n1 and n2, respectively. We
then take the intersection of n1 and n2 to compute c and
apply Equation (1).

similarity(D1, D2) =
|c|

|n1|+ |n2| − |c|
(1)

If two documents share no common XPaths, their similarity
is 0, and if they have exactly the same set of XPaths, i.e.,
their DOM trees are equal, the result is 1.0. We have slightly
adapted the metric to better fit our setting. Compared to
the original implementation of this metric, we omitted the
notion of generalized XPaths, which are supposed to express
repeating patterns. Such patterns are very likely to occur
on actual websites, e.g., multiple rows of a table all have
the same structure. MutaGen, however, does not generate
such structured markup. Therefore, generalized XPaths might,
at best, introduce noise in our case, as the generalization
would detect patterns where there are none. Additionally, we

Table 3: Sanitizer Bypasses Found with MutaGen

Id Sanitizer name Config. Cause Description Status

google-caja-sanitizer (*) Default Various Abandoned Projectssanitizer (*)
1 DOMPurify (jsdom 19) Default SI 6 Decodes and reflects text content Independently fixed
2 DOMPurify Relaxed PI 1 noframes not parsed correctly Resolved
3 Typo3 Default PI 4 CDATA sections not parsed correctly 2022-23499 ‡
4 Typo3 Default PI 5 Closing bang comment not detected 2022-36020
5 Typo3 Relaxed PI 1 Namespace confusion 2022-23499 ‡
6 Typo3 Relaxed PI 2 noscript content parsed as HTML instead of as text 2023-38500
7 AntiSamy Default † Tags not listed in the configuration not handled securely Acknowledged
8 AntiSamy Relaxed PI 5 Closing bang comment not detected Acknowledged
9 AntiSamy Relaxed PI 1 Tags with text content are not closed if they contain a comment 2023-43643
10 HtmlRuleSanitizer Default PI 5 Closing bang comment not detected Resolved
11 HtmlRuleSanitizer Relaxed PI 1 Wrong parsing of tags with text content allows to break out of attributes Reported
12 HtmlSanitizer Relaxed PI 2 noscript content parsed as markup. Resolved
13 HtmlSanitizer Relaxed PI 3 Firefox parsing differential Acknowledged
14 rgrove/sanitize Relaxed PI 2 noscript content parsed as markup instead of as text 2023-23627
15 JSoup Relaxed PI 3 Namespace confusion Resolved
16 JSoup Relaxed PI 2 noscript content parsed as markup instead of as text Resolved

†: Logic bug. *: Based on the same code base, largely affected by the same vulnerabilities. ‡: Two separated vulnerabilities got grouped into this CVE.

added the notion of text nodes. The original metric is only
concerned with the relationship between tags. However, if
text nodes are moved from one tag to a different one during
sanitization, this has a profound impact on the rendering of
the resulting fragment. Thus, we decided to add text nodes as
well. The same applies to comments and CDATA sections
if the parser recognizes those. While they do not influence
the rendering, parsing them incorrectly leads to a different
result upon serialization. To model this influence, we also
add XPaths for text, comment, and CDATA nodes, as they
are always leaf nodes.

Table 4: Similarity of Sanitizers and Browsers Parse Tree.

Sanitizer Chrome Webkit Firefox
F D F D F D

DOMPurify 0.87 0.87 0.87 0.87 0.81 0.86
DOMPurify (jsdom19) 0.88 0.88 0.88 0.88 0.82 0.88
sanitizer 0.36 0.36 0.36 0.36 0.37 0.36
google-caja-sanitizer 0.50 0.50 0.50 0.50 0.50 0.50
sanitize-html 0.39 0.39 0.39 0.39 0.41 0.39
HtmlSanitizer 0.90 0.90 0.90 0.90 0.84 0.90
HtmlRuleSanitizer 0.15 0.15 0.15 0.15 0.15 0.15
Typo3 0.52 0.52 0.52 0.52 0.53 0.52
rgrove/sanitize 0.94 0.94 0.94 0.94 0.88 0.94
loofah 0.22 0.22 0.22 0.22 0.25 0.22
AntiSamy 0.58 0.58 0.58 0.58 0.58 0.58
JSoup 0.51 0.51 0.51 0.51 0.52 0.51

F: fragment parsing, D: document parsing

4.2. Parsing Accuracy

We calculate this by retrieving the resulting DOM trees
after rendering each unsanitized payload in all browsers
and configurations and comparing them to the internal
representation of the sanitizer. Due to implementation
differences, these internal DOM-like structures can look
fairly different. DOMPurify, for example, creates a complete
HTML document with head and body sections, while others
operate on a document fragment. Thus, we first unify the

internal representations to all have the same shape. The
results are provided in Table 4. If the sanitizer’s HTML
parser would perfectly match the browser’s, the similarity
score would be 1.0. A score of below 0.5, on the other hand,
means that for two DOM trees, more than half of their leaf
nodes only occur in either DOM tree. That is, they differ by
a significant amount.

As the table shows, the similarity scores vary greatly
between sanitizers. While some (e.g., DOMPurify, HtmlSan-
itizer or rgrove/sanitize) are operating on a fairly accurate
internal structure, others such as HtmlRuleSanitizer produce
wildly different parsing results.

Interesting to note is that while the similarity of fragment
and document parsing modes are very similar for Chromium
and WebKit, the scores for Firefox diverge noticeably. This
is a result of the Firefox fragment parser deviating from the
specification, which we discuss in depth later on.

4.3. Classifying Parsing Deficiencies

As shown previously, the different parsers do not always
accurately parse their inputs, compared to the major browsers.
Having access to the sanitizer’s internal representation allows
us to also analyze where their HTML parsers violate the
specification. Such violations do not necessarily imply a
security issue but, especially when several can be combined,
are often building blocks for bypasses. In any case, they are
functional deficiencies, frequently manifesting as overzealous
transformations of the output.

4.3.1. Parsing. We found five distinct parsing issues (PI),
each affecting one or more different sanitizers.
1: Incorrect Parsing of Tags with Text Content Several tags
instruct the parser to switch to parsing modes recognizing
textual content such as RCDATA [40]. In the RCDATA
state, the parser interprets everything between the opening
tag until a matching closing tag as text, decoding character
references in the process. If the parser does not model these

transitions, it parses the text content as if it were HTML
markup. This can allow an attacker to trick the parser into
parsing regular markup as if it were an attribute. Consider
the string: <iframe><div id=’</iframe>’>. Upon
encountering an opening iframe tag, the parser switches to
the RCDATA state, everything up until the closing iframe
tag is parsed as text and added as a text node below the
iframe node. If the sanitizer does not model this transition
from HTML parsing to text parsing, it would parse the string
as if the iframe had a div node with an id attribute
containing the string </iframe> as its child. Then, the
parser continues to look for further child elements of the
iframe node until a top-level closing iframe tag occurs.
Effectively, the parser attaches content that should be outside
of the iframe tag as its children. This problem class
affects all tags that have textual content, namely textarea,
xmp, noframes, noembed, iframe, title, style
and plaintext.

One possibility for why this error occurs is using a regular
XML parser to parse HTML documents, as XML does not
have such transitions. This problem only applies to tags in
the HTML namespace; if, e.g., a xmp tag was parsed as SVG,
it would have regular content. As sanitizers do not tend to
make namespace information (if they are aware of it in the
first place) available, we automatically labeled their DOM
trees with the namespaces based on the rules for namespace
transitions from the parsing specification [24].

The detection approach for this issue class works as
follows: Examine the children of all nodes, which, according
to the specification, shall only have text children. If at least
one child is not a text node, the parser is affected by PI 1.
2: Incorrect Parsing of noscript This case is a special
case of PI 1, but due to additional complexities, it is
listed separately. The noscript tag has unusual parsing
semantics, even for the convoluted HTML specification.
Its semantics rely on a parsing state flag, the scripting
flag [41], which signals JavaScript support. In the case
of JavaScript support, the content of noscript shall be
parsed as text, otherwise as markup. This feature was used
to provide fallback solutions to legacy browsers without
JavaScript support. While such browsers do exist, they are
outside the threat model of XSS attacks. A sanitizer parsing
noscript as if no JavaScript support was available is at
risk for bypasses. This class can be detected in the same
fashion as PI 1.
3: Foreign Content and Namespace Transitions When
parsing foreign content, i.e., SVG or MathML segments, sev-
eral integration points are available to switch the parser back
to HTML mode. For example, via the foreignObject
tag, a piece of HTML can be embedded into an SVG graphic,
allowing the reuse of CSS styles. Similar integration points
exist for MathML, e.g., mtext. It is important to note that
they integrate an HTML block into the foreign content.

A number of HTML tags also have special meaning inside
foreign content [24]. Instead of a seamless integration, they
however instruct the parser to close the currently open non-
HTML elements. As an example, consider <svg><desc>
<div>X</div></desc>. Consequently, the pars-

ing result is <svg><desc><div>X</div></desc>
</svg>. Both div and img are among the tags
terminating foreign content. The desc tag, however, serves
as an HTML integration point, allowing the div tag to
be part of the svg block. Meanwhile, upon encountering
the img tag without such a preceding integration point, the
parser closes all open SVG tags and attaches the img directly
to the parent node. To correctly model the behavior of each
tag, the parser has to be aware of the tag’s namespace, and
as such, it has to model these namespace transitions. Failing
to do so, e.g., by attaching the img tag as a child of the
svg element, falls into this category.

We detect this by first assigning namespace labels ac-
cording to the specification. This allows us to scan the DOM
for invalid states, such as an img tag as a child of a svg
tag.
4: Incorrect CDATA Handling XML documents allow
enclosing content that shall be interpreted literally and not
parsed as markup in so-called CDATA sections. It can be used
to represent text containing special characters or XML syntax
without additional escaping. A CDATA section is written as
follows: <![CDATA[to emphasize]]>.

While HTML is derived from SGML, the parser
treats CDATA sections outside of foreign content as
errors. As HTML parsing never fails, it also speci-
fies how erroneous CDATA sections shall be handled:
the opening [CDATA] and closing]]> strings shall
be treated as comments [42]. This handling, however,
is rather unintuitive. <![CDATA[a<b]]> is treated as
<!--[CDATA[a<b]]-->, matching the specification.
However, if the CDATA section does contain a clos-
ing angle bracket, the resulting comment terminates
early. The input <![CDATA[<t>)]]> is parsed as
<!--[CDATA[<b--><t>)]]>, with the t tag out-
side of the comment and part of the regular DOM. If a
parser expects the CDATA section as a whole to be treated
as a comment, it is at risk for a bypass based on the second
example. If the tag t was an XSS payload instead, the
parser would see the payload as part of a comment and thus
harmless. If a CDATA node containing one or more closing
angle brackets is returned in the DOM, we mark the sample
as causing PI 4.
5: Closing Bang Comments HTML specifies the syntax
for comments as: <!-- content -->. However, it also
accepts incorrectly closed comments, that is, comments
closed with --!> [43]. If an HTML parser misses this detail,
it would treat a string such as <!-- c--!><t>--> as if
the t tag was inside the comment. This allows the smuggling
of XSS payloads through comments if they are included in
the output. We detect this issue by scanning the DOM for
comments containing the string --!>.

4.3.2. Serialization. To return the sanitized result to the
caller, the sanitizer has to turn the internal representation
back into its textual form, called serialization. This section
is concerned with problematic implementations of the seri-
alization step. The serialization usually is implemented in
the HTML parser, but if it does not handle these aspects

securely, the sanitizer should take care of them to avoid easy
bypasses. We derived two categories of serialization issues
(SI) the bypasses are based on.
6: Decodes Text Values The HTML specification instructs
the parser to decode character references. Character refer-
ences have the form of e.g., < to encode <. To render a
document, a browser has to decode such character references,
as is mandated by the specification. However, if a sanitizer
decodes character references and does not encode them again
during serialization, there is potential to make the sanitizer
turn benign input into dangerous output. This issue can
occur in several parts of the DOM, namely inside text nodes,
attributes, or comments.

Based on the abstract representation of the generated
payload, we can easily derive which encodings were applied
to the XSS trigger. If at least one encoding was applied and
the decoded payload can be found inside one of the named
node types, the sanitizer is affected by PI 6.
7: Failure to Encode Text Values Nodes parsed as text
that the sanitizer does not encode during serialization are a
significant risk for bypasses. If there is a parsing differential
between the sanitizer and the users’ browser, the assumed
text node might be parsed as markup and a trivial bypass
occurs. An example of how this can occur is <select>
<iframe><script>f(), one of the bypasses affecting
both Caja-based sanitizers. According to the specification,
the content of iframe tags shall be parsed as text. Conse-
quently, <script>f() would be seen as benign content
and attached as a text node below it. However, when a
browser parses the whole fragment, it behaves differently.
An iframe tag violates select’s content model. The
select tag can only contain option, optgroup, hr tags
and “script supporting elements” [44]. Script supporting ele-
ments include script and template tags. Consequently,
an iframe is not a valid child of select, and the browser
drops it during tree construction. This turns the supposedly
harmless text node into markup that is regularly parsed, and
the script is finally executed.

To defend against such attacks, a sanitizer would have
to consequently encode all text nodes and attribute values.
Performing such encoding would have prevented all bypasses
from Table 3 but bypass 1 and 7. We detect missed encoding
steps by checking if the XSS trigger is located inside a text
node or attribute value in the sanitizer’s internal DOM and
whether it occurs in the output in unencoded form.

4.3.3. Affected Sanitizers. Table 5 breaks down what
sanitizers are affected by which parsing or serialization issues.
In summary, we detected functional deficiencies in every
analyzed parser and problematic handling of text values in all
but two. The two sanitizers not affected by either serialization
issue, i.e., those that do not remove encodings from their
input and consequently encode text nodes, are the two where
we found no bypasses.

The fact that each parser is at least affected by two parsing
issues is cause for concern and highlights the complexity of
the parsing task.

Table 5: Parsing and Handling Issues Affecting Each Sanitizer

Parsing Serialization

Sanitizer PI
1

PI
2

PI
3

PI
4

PI
5

SI
6

SI
7

AntiSamy
sanitizer # # # #
google-caja-sanitizer # # # #
DOMPurify # # G#
DOMPurify (jsdom19) # #
HtmlSanitizer # # G# G#
HtmlRuleSanitizer # #
JSoup # G# G#
loofah # # # #
sanitize H# # # G#
sanitize-html # # # #
Typo3 #

 : Affected, G#: Affected in relaxed configuration, #: Unaffected,
H#: Affected but not in scope of threat model

The first problematic aspect is the correct parsing of
tags with textual content. Every analyzed parser fails at this
task for at least some samples. Similarly, the handling of
noscript, which not only requires a parsing transition
but also relies on runtime information in the browser, is a
frequent source of mistakes. How HTML parsers implement
this aspect differs, with some requiring users to pick a value
for the scripting flag, e.g., as AngleSharp for .NET. Others,
such as the Nokogiri HTML parser for Ruby, do not offer
a choice at all. The sensitive default for sanitization code
would be to default to scripting being active. Only the Google
Caja-based sanitizers had this setting, however.

If the parser is mainly used for tasks such as web scraping,
defaulting to false seems sensible. It is, however, a potential
security issue, as bypasses 6, 16 and 14 show. This quirk
received considerable media attention in 2019 when Masato
Kinugawa found a bypass in the Google Search Bar [45]
based on the duality of noscript. Nevertheless, as our
results show, this has not led to awareness for authors of
sanitizing libraries.

Foreign content (PI 3) is similarly a common source
of mistakes. The rules on when to switch namespaces are
not correctly implemented in any analyzed sanitizer. All
sanitizers we were able to bypass are also affected by at
least one serialization issue, as those bypasses usually rely
on a parsing mistake combined with a lack of encoding to
succeed. Interestingly, HtmlRuleSanitizer allows the user to
configure if HTML entities in text nodes shall be encoded.
Giving control to the user might seem desirable, but without
additional warning, enabling this option allows to trivially
bypass the sanitizer.

4.4. Browser Parsing Differentials

Another issue for authors of sanitization routines is
the aspect that browsers might diverge from the HTML
specification in some cases. Firefox’s fragment parser, for

context

svg

embed

iframe

#text

(a) Chrome parsing result

context

svg

embed

iframe

desc

img

(b) Firefox parsing result

Figure 6: Parsing differential between Chrome and Firefox.
Blue nodes have the HTML namespace, green ones SVG.

example, does not parse foreign content correctly, i.e., it is
affected by PI 3. Instead of closing the foreign namespace
upon encountering an HTML tag supposed to terminate
foreign content, it stays in the current parsing mode. Nor-
mally, this simply results in a website being rendered
incorrectly. However, such differences can be abused to
bypass sanitizers as well. A payload exemplifying this is-
sue is <svg><embed><iframe><desc><img src=x
onerror=f()>. The parsing results for Chromium (Fig-
ure 6a) and Firefox (Figure 6b) are provided in Figure 6.
Chromium terminates the SVG context upon encountering
the embed tag and parses the remaining input as HTML.
Therefore, the opening desc and the image tag are parsed
as text and attached under the iframe node, preventing the
execution of the error handler. Firefox, on the other hand,
parses both embed and iframe as SVG tags, causing them
to lose their HTML semantics. Then, upon encountering
desc, the parsing rules for SVG apply, and the parser
switches back to HTML [46]. Consequently, Firefox parses
the img tag as a regular HTML tag and executes its
onerror handler, calling f . A sanitizing routine purely
relying on the specification to assess whether a tag needs
sanitization is, therefore, vulnerable to bypasses such as the
one described here. Thus, to accurately sanitize input, a
sanitizer either has to be aware of all possible browser quirks
or put users of selected browsers at risk. Without information
about the browser of the specific user, it then has to find
the lowest common denominator, degrading its output. We
found the example provided above during our study affecting
HtmlSanitizer with a relaxed configuration (bypass 13).

Resolving this issue has proven to be involved, as it is
unclear who is responsible for fixing such bugs. A sanitizer
adding a workaround for a browser bug would degrade the
output for compliant browsers. Not fixing it, however, leaves
users of non-compliant browsers at risk.

We have reported this parsing differential to Mozilla, and
it awaits resolution at this time. Please note that this example
also manifests in a more involved form. For example, we
detected payloads for JSoup where this difference allows
lifting the payload from an attribute value.

5. Discussion

The results presented in the previous section paint a dire
picture of the state of server-side HTML sanitization, directly
answering the initial questions. Due to the lack of information
available to the sanitizers, it is not feasible to build one that
is both accurate and secure, and popular sanitizers fall well
short of this goal.

We now discuss some problematic aspects in depth,
detail the disclosure process, explain how to mitigate XSS
vulnerabilities in the presence of parsing differentials and
finally provide a general outlook.

5.1. Foreign Content

The fact that HTML allows embedding foreign content,
i.e., SVG or MathML snippets, adds significant difficulties
for authors of parsing and sanitization libraries. As every
namespace transition changes the semantics of several tags,
missing even a single one is often enough to introduce
a vulnerability. As shown in the previous Section, none
of the tested sanitizers implement this correctly, and even
the major browsers do not always get it right. This makes
the question of how sanitizers should handle such mixed
documents an interesting one. rgrove/sanitize deviates from
the remaining libraries, as it explicitly warns that it does
not support sanitization of foreign content. It defaults to
simply removing everything it parses as foreign content,
which frequently includes regular HTML content due to
not implementing the complex namespace transition rules.
This warning is not enforced in the library itself, as it is
possible to add the offending tags to its allow list without
further warning. We have reported issues related to incorrectly
parsing foreign content to rgrove/sanitize’s maintainers, and
they added additional protection mechanisms, such as always
escaping the content of text nodes.

5.2. Weaponizing Sanitizers

Surprisingly, in some cases, the sanitizer turned ini-
tially harmless HTML fragments into a dangerous pay-
load. Such cases occur if the sanitizer relies on the
underlying parser’s serialization functionality. DOMPu-
rify, using jsdom v19, was affected by such an issue,
namely bypass 1. When sanitizing <svg><style><
img src=x onerror=f()><keygen> the sani-
tizer recognized the escaped img tag as harmless text.
It then returned the string <svg><style><img src=x
onerror=f()> which is clearly problematic. During se-
rialization, the XML encoded text node, i.e., the img tag,
got decoded, which armed the payload. The presence of
a trailing void (i.e., self-closing) element caused jsdom to
XML decode the text node, which was then picked up by
the browser’s DOM parser. This validates the inclusion of
destructive transformations, such as encoding operations, for
our payload generation. URI encoding, on the other hand,
was never reverted by any tested sanitizer.

5.3. Disclosure Process

We divided the disclosure process into two parts: vulner-
abilities and functional deficiencies. Each sanitizer bypass
puts a considerable amount of website operators at risk of
exploitation and, consequently should be resolved quickly.
All vulnerabilities stemming from parsing differentials can
be prevented without solving the underlying issue. This
usually requires degrading the output quality but might be an
attractive short-term solution. Resolving parsing issues such
as PI 3 or PI 1, on the other hand, often requires fundamental
reengineering of the parser itself. We are currently working
on reporting the parsing issues discussed in Section 4.3.3
as well as more basic parsing errors we uncovered to their
respective maintainers. HtmlRuleSanitizer for example parses
the input <div id= <div> as <div id=""><div>.
This behavior does not follow the specification, which
mandates it to be parsed as <div id="<div/">.
Vulnerability Disclosure. We contacted the corresponding
maintainers of all actively maintained libraries from the test
set regarding our findings. At the time of writing, most of
them have been fixed, as shown in the Status column in
Table 3.

As the main focus of DOMPurify [47] lies on client-side
usage, using it on the server is more involved. Here, it relies
on an external HTML parsing library to produce a DOM
tree, with the manual recommending jsdom. The chosen
HTML parsing library then has to be manually installed and
managed. Consequently, updating DOMPurify itself does
not update the underlying parser. This opens the door for
vulnerabilities to persist, as parsing differentials in jsdom
itself are no security issues. This requires users to assess
the necessity for updating jsdom without any aid from the
library. While bypass 1, affecting DOMPurify in its default
configuration, had been independently fixed in jsdom version
20 before we were able to report it, deployment of the fix
required manually updating jsdom.

We, therefore, searched for open-source projects using
the vulnerable combination of DOMPurify and jsdom in
version 19 to disclose our findings. This did affect projects
from Mozilla and Grafana Labs, and they have resolved the
issue by now.

The two libraries based on Google Caja, i.e., google-caja-
sanitizer and sanitizer, are abandoned projects relying on
the Caja codebase, which is itself abandoned. Consequently,
reporting bugs in those libraries is infeasible, as they simply
repackage the Google code. Therefore, we are currently
analyzing open-source projects using a Caja-based sanitizer
to see whether they are susceptible to the bypasses we found.
So far, this led to a change in sanitizers in an Adobe project,
but it is an ongoing effort.

5.4. Outlook

Many of the defects uncovered in the work are rooted
in the overwhelming complexity of the HTML specification.
While resolving them improves the state of server-side sani-
tization, the fundamental problem persists. This is coupled

with the high rate of proposals being made toward the web
platform, increasing the maintenance effort for sanitizing
and parsing library authors. One recent example of this
churn is the deprecation of Bleach, an HTML sanitizer for
Python [48]. It relied on an unmaintained HTML parser,
leading the maintainer to the conclusion that attempting to
build upon an unreliable foundation is futile.

Thus, a long-term vision for input sanitization is required.
Such a vision is developing on the client side, thanks to
the Sanitizer API [14]. Ensuring the browser ships with a
secure by default sanitizer, which guarantees to keep up with
changes to the HTML and related standards, prevents a large
class of XSS vulnerabilities. On the server side, such a
unified solution is not feasible. Due to the heterogeneous
ecosystems found on the web, a one-size-fits-all sanitizer
is not possible. In addition, the update situation remains
problematic, as a deployed sanitizer can get out of sync
with the HTML, SVG, or MathML specification. On the
client side, this is solved by automatic updates employed
by all major browsers. Server-side dependency management
solutions (e.g., npm) require manual intervention to install
updates, with popular websites being slow to deploy new
versions [49].

One helpful aspect could be to provide an HTML parsing
reference implementation, usable for differential testing.1
This would require a commitment from the browser vendors
to resolve parsing divergences but would greatly simplify
the validation of new parsers. Approaches such as the one
presented here could then provide a large corpus of parsing
edge case inputs against which new implementations can be
validated. To facilitate this process, we are currently working
on turning the samples with diverging behavior into tests
and submitting them to the Web Platform Tests project [50]
(WPT). WPT currently serves as a benchmark on how well
different browsers implement various aspects of the web
platform. As the major browser vendors monitor their WPT
scores, this hopefully helps to shine light on these issues.

While rooting out parsing differentials reduces the likeli-
hood of sanitizer bypasses, vulnerabilities due to logic errors
will remain. As every software contains bugs, especially
when dealing with a byzantine topic such as parsing HTML,
a second layer of defense is required.

5.5. Mitigating Sanitizer Bypasses

Several approaches have been proposed to prevent server-
side XSS vulnerabilities, including document structure in-
tegrity [51] or Noncespaces [52], both attempting to clearly
differentiate user-provided content from regular markup.
However, none of these proposals made it into the web
platform itself.

The most realistic solution today is deploying a se-
cure Content Security Policy (CSP) to enforce the sep-
aration of markup and code. A sufficiently strict CSP,

1. One can argue that developing a reference implementation together
with updates to the specification should also improve its structure, as related
information is frequently scattered across several places at the moment.

1 <script nonce="rAnd0m">g('HTML');</script>
2 <script>f();</script>

Figure 7: Two inline scripts, one with nonce and one without

which, e.g., bans inline event handlers and requires
nonces or hashes to execute inline scripts, would pre-
vent typical XSS vulnerabilities, even in the presence
of a sanitizer bypass. Such a CSP realizing such a
separation could look like this: script-src ’self’
https://jscdn.com ’nonce-rAnd0m’;. This pol-
icy allows loading JavaScript files from both the same origin
as the site (due to the ’self’ source) as well as from
jscdn.com over HTTPS. Additionally, it allows inline scripts
declared with nonce attribute set to r4nd0m. Inline event
handlers and scripts without a matching nonce are blocked.
In Figure 7, the first script declares a nonce matching the
header, and g(’HTML’) executes. The second script has
no nonce attribute and is blocked due to the CSP. Such a
separation requires care, however. This nonce-based approach
is easily defeated by directly putting attacker-controlled input
into the script’s content, e.g., if an attacker can influence the
value ’HTML’.

In general, deploying secure CSPs has proven to be
challenging for most websites. Difficulties stem from third-
party code relying on inline scripts, forcing to forgo strict
separation of markup and code by requiring directives such
as unsafe-inline, which break the separation as shown
by Steffens et al. [53]. Integrating third-party code is far
from the only issue with deploying secure CSPs, as a wide
range of research shows [e.g., 54–57].

5.6. Limitations & Future Work

In its current version, MutaGen only generates outputs
containing HTML, SVG, and MathML structure. All three
of these are syntactically similar. Consequently, all sanitizers
process them accordingly. However, HTML has additional
integration points. Both CSS (Cascading Style Sheets) as
well as JavaScript can be integrated directly into HTML
documents. As they are entirely different from a syntactical
point of view, sanitizers must implement additional parsing
modes to support this. Some of the tested sanitizers, such as
AntiSamy, do this, for example, by integrating an additional
parsing library for CSS. However, the interaction between
these languages is also a cause for bypasses, highlighted
by a recent vulnerability in rgrove/sanitize [58]. Extending
MutaGen to generate such payloads might be an exciting
opportunity for future work.

6. Related Work

We group related work into three categories: (differential)
fuzzing of web technologies, differential fuzzing, cross-site
scripting, and security analysis of sanitizing routines.

6.1. (Differential) Fuzzing of Web Technologies

Detecting vulnerabilities via automated test case gen-
eration is the domain of the so-called fuzz testing. When
applied to the web, it is mainly used to detect memory
errors inside the browser. Fuzzing JIT compilers to detect
miscompilations leading to crashes and potential remote
code execution vulnerabilities is a particularly active field
of research [e.g., 59–61]. Similarly, the browser’s HTML
parser implementation can and has been tested via fuzzing,
for example, by Xu et al. [62] with FREEDOM.

Semantic errors, i.e., bugs that do not manifest in crashes
but unexpected or undesirable behavior, are a target less
frequently considered for automated testing. This is due
to fuzzing relying on so-called oracles to detect unexpected
behavior. Adding an oracle to detect, e.g., buffer overflows
only requires compiling the browser with modified settings.
Creating an oracle detecting semantic issues is much more
involved, as it requires analysis of the semantics of the
application output.

One recent example where fuzzing was applied to detect
semantic errors is by Kim et al. [63], who searched for
universal cross-site scripting (UXSS) vulnerabilities. UXSS
is universal in the sense that it does not only affect a single
origin but allows the attacker to run their code in all origins.

A fuzzing technique focused on detecting divergences
in behavior among different implementations for the same
specification is differential fuzzing [64]. Here, inputs are gen-
erated and fed into several applications that, if correct, should
behave the same. Differential fuzzing has been successfully
applied to detect bugs in JavaScript JIT compilers [59],
CPUs [65] and implementations of various protocols [66–
68] or specifications [69]. While we consider a similar setting,
applying differential testing to HTML parsing is problematic.
When validating a certificate, implementations are expected
to always return the same result. This is not necessarily the
case for HTML parsing, as some aspects are underspecified
and the negative consequences much less obvious.

6.2. Cross-Site Scripting

As the most prevalent vulnerability class on the web,
XSS has undergone extensive study.

Client-side XSS is the easiest to detect, as it takes place
inside the client’s browser. Using a taint-tracking enabled
browser, one can readily detect data flows susceptible to
client-side XSS. This approach was successfully used to
study the prevalence of client-side XSS [3–6, 8], improved
exploit generation strategies [7] and potential defenses [70].
Similarly, Steffens et al. [71] studied the prevalence of client-
side stored cross-site Scripting via dynamic taint tracking.
The most related aspects to this work are those covering the
generation of XSS exploit payloads [e.g., 3–7]. However, all
the noted works rely on detailed insights into the application
gained via taint-tracking to craft targeted exploits. Our
approach, on the other hand, has no information into the
inner workings of the sanitizers or the browser’s HTML
parser.

jscdn.com

The complexity of HTML parsing and its impact on
sanitizers has received less attention. Louw and Venkatakr-
ishnan [72] suggested circumventing this issue by making the
browser build the DOM programmatically without relying
on it parsing the response in the same fashion. Simplifying
the HTML specification is another seemingly attractive idea.
By removing problematic tags and features, most of the
issues presented in this work could be prevented. However,
according to a recent study by Hantke and Stock [19], a large
portion of Websites rely on HTML parsing quirks. Thus,
simplifying the parsing process is not a realistic option in the
near future. mXSS vulnerabilities have seen comparatively
little academic attention, with only the seminal work by
Heiderich et al. [25] covering it in depth. Its primary focus,
however, was on browser-based mXSS vectors, while we
focus on what they called “mutation based attacks” [25].

6.3. Sanitizer Analysis

A lot of work has studied the security properties of
HTML sanitizers, both on the client [1, 9, 37] as well on the
server-side [36, 73–75]. However, These works focus on
implementation mistakes in the actual sanitizer code, i.e., by
analyzing string modification chains. The bugs we consider
are frequently outside the sanitizer’s direct control due to
the used HTML parsers returning false parsing results.

That relying on custom HTML parsing code is prob-
lematic has been highlighted by and integrated into DOM-
Purify [47]. However, as shown in Section 4, the chosen
approach only works reliably on the client, as the sanitizer
can access the browser’s HTML parsing logic.

7. Conclusion

While HTML has an official specification codifying
expected parsing behavior, implementing it correctly is
challenging. This even affects the major browsers, which can
not always agree on how a piece of markup shall be parsed.
The situation is even worse for server-side HTML sanitizers
despite them being an integral part of most websites’ security
apparatus. On the server, HTML sanitizers are fighting a
losing battle, as they do not have sufficient information to
accurately parse attacker-controlled input in the same way
a browser does. The used parsing mode, dynamic parsing
state flags, the employed browser, and its quirks are all
information out of reach for the sanitizer. Lacking this
information, it has to make an educated guess, frequently
with devastating consequences. Parsing differentials, i.e.,
diverging parsing behaviors between sanitizer and browser,
are one consequence of these problems and a direct security
threat: Either allowing nefarious actors to bypass the sanitizer
completely or to abuse the supposed protection mechanisms,
making it transform benign input into harmful exploits.

In this paper, we presented MutaGen, a generator for
mutation-prone pieces of HTML. Using MutaGen and our
evaluation testbed, we assessed how 11 sanitizers across five
programming languages deal with these kinds of inputs. Not
only did we uncover functional deficiencies in each of their

parsing algorithms, but we were also able to bypass all but
two of them automatically. These findings highlight the sorry
state of server-side HTML parsing and sanitization, a topic
left unexplored for far too long.

Acknowledgments
We gratefully acknowledge funding by the Deutsche

Forschungsgemeinschaft (DFG, German Research Founda-
tion) under Germany’s Excellence Strategy – EXC 2092
CASA – 390781972 as well as from the European Union’s
Horizon 2020 research and innovation programme under
project TESTABLE, grant agreement No 101019206.

References
[1] D. Klein, T. Barber, S. Bensalim, B. Stock, and M. Johns, “Hand

Sanitizers in the Wild: A Large-scale Study of Custom JavaScript
Sanitizer Functions,” in European Symposium on Security and Privacy,
2022.

[2] K. Kotowicz, “Trusted types - mid 2021 report,” https://research.
google/pubs/pub50512, Google Research, Tech. Rep., 2021.

[3] S. Lekies, B. Stock, and M. Johns, “25 Million Flows Later: Large-
scale Detection of DOM-based XSS.” in Conference on Computer
and Communications Security, 2013.

[4] W. Melicher, A. Das, M. Sharif, L. Bauer, and L. Jia, “Riding
out DOMsday: Towards Detecting and Preventing DOM Cross-Site
Scripting.” in Network and Distributed Systems Security, 2018.

[5] B. Stock, M. Johns, M. Steffens, and M. Backes, “How the Web
Tangled Itself: Uncovering the History of Client-Side Web (In)Security.”
in USENIX Security Symposium, 2017.

[6] B. Stock, S. Pfistner, B. Kaiser, S. Lekies, and M. Johns, “From
Facepalm to Brain Bender: Exploring Client-Side Cross-Site Scripting.”
in Conference on Computer and Communications Security, 2015.

[7] S. Bensalim, D. Klein, T. Barber, and M. Johns, “Talking About
My Generation: Targeted DOM-based XSS Exploit Generation using
Dynamic Data Flow Analysis,” in European Workshop on Systems
Security, 2021.

[8] D. Klein, M. Musch, T. Barber, M. Kopmann, and M. Johns, “Accept
All Exploits: Exploring the Security Impact of Cookie Banners,” in
Proc. of the Annual Computer Security Applications Conference, 2022.

[9] D. Bates, A. Barth, and C. Jackson, “Regular Expressions Considered
Harmful in Client-Side XSS Filters,” in WWW, 2010.

[10] F. Hantke, S. Roth, R. Mrowczynski, C. Utz, and B. Stock, “Where
are the red lines? towards ethical server-side scans in security and
privacy research,” in IEEE Symposium on Security and Privacy, 2024.

[11] J. Weinberger, P. Saxena, D. Akhawe, M. Finifter, E. Shin, and D. Song,
“A Systematic Analysis of XSS Sanitization in Web Application
Frameworks,” in ESORICS, 2011.

[12] M. Samuel, P. Saxena, and D. Song, “Context-sensitive auto-
sanitization in web templating languages using type qualifiers,” in
Conference on Computer and Communications Security, 2011.

[13] P. Saxena, D. Molnar, and B. Livshits, “SCRIPTGARD: Automatic
Context-Sensitive Sanitization for Large-Scale Legacy Web Appli-
cations,” in Conference on Computer and Communications Security,
2011.

[14] W. P. I. C. Group, “HTML Sanitizer API,” https://wicg.github.io/
sanitizer-api, 2022, accessed 8.12.2023.

[15] ——, “HTML Sanitizer API,” https://wicg.github.io/sanitizer-api/
#strings, 2022, accessed 8.12.2023.

[16] WHATWG, “HTML Standard: 1.7 Design Notes,” https://html.spec.
whatwg.org/#design-notes, accessed 8.12.2023.

[17] D. Megginson, “SAX,” http://www.saxproject.org/, 2004, accessed:
8.12.2023.

[18] WHATWG, “HTML Standard: 13.2.10.3 Unexpected markup in tables,”
https://html.spec.whatwg.org/multipage/parsing.html#unexpected-
markup-in-tables, accessed 8.12.2023.

[19] F. Hantke and B. Stock, “HTML Violations and Where to Find Them:
A Longitudinal Analysis of Specification Violations in HTML,” in
Internet Measurement Conference, 2022.

https://research.google/pubs/pub50512
https://research.google/pubs/pub50512
https://wicg.github.io/sanitizer-api
https://wicg.github.io/sanitizer-api
https://wicg.github.io/sanitizer-api/#strings
https://wicg.github.io/sanitizer-api/#strings
https://html.spec.whatwg.org/#design-notes
https://html.spec.whatwg.org/#design-notes
http://www.saxproject.org/
https://html.spec.whatwg.org/multipage/parsing.html#unexpected-markup-in-tables
https://html.spec.whatwg.org/multipage/parsing.html#unexpected-markup-in-tables

[20] WHATWG, “HTML Standard: 13.4 Parsing HTML fragments,” https://
html.spec.whatwg.org/multipage/parsing.html#fragment-case, accessed
8.12.2023.

[21] T. C. Authors, “html document parser fastpath.cc,” https:
//source.chromium.org/chromium/chromium/src/+/main:third party/
blink/renderer/core/html/parser/html document parser fastpath.cc,
accessed 8.12.2023.

[22] W3C, “Mathematical Markup Language (MathML) Version 3.0 2nd
Edition,” https://www.w3.org/TR/MathML3, accessed 8.12.2023.

[23] ——, “Scalable Vector Graphics (SVG) 2,” https://svgwg.org/svg2-
draft, accessed 8.12.2023.

[24] WHATWG, “HTML Standard: 13.2.6.5 the rules for parsing tokens
in foreign content,” https://html.spec.whatwg.org/multipage/parsing.
html#parsing-main-inforeign, accessed 8.12.2023.

[25] M. Heiderich, J. Schwenk, T. Frosch, J. Magazinius, and E. Z.
Yang, “mXSS Attacks: Attacking well-secured Web-Applications
by using innerHTML Mutations,” in Conference on Computer and
Communications Security, 2013.

[26] D. Klein, “HTML Parsing Differentials,” https://github.com/ias-tubs/
HTML parsing differentials, 2023, accessed: 8.12.2023.

[27] M. Bentkowski, “HTML sanitization bypass in Ruby Sanitize
<5.2.1,” https://research.securitum.com/html-sanitization-bypass-in-
ruby-sanitize-5-2-1, 2020, accessed 8.12.2023.

[28] ——, “Write-up of DOMPurify 2.0.0 bypass using mutation XSS,”
https://research.securitum.com/dompurify-bypass-using-mxss, 2019,
accessed 8.12.2023.

[29] ——, “Mutation XSS via namespace confusion – DOM-
Purify <2.0.17 bypass,” https://research.securitum.com/mutation-
xss-via-mathml-mutation-dompurify-2-0-17-bypass, 2019, accessed
8.12.2023.

[30] E. Yalon, “Mutation Cross-Site Scripting (mXSS) Vulnerabilities
Discovered in Mozilla-Bleach,” https://securityboulevard.com/2020/
07/mutation-cross-site-scripting-mxss-vulnerabilities-discovered-in-
mozilla-bleach, 2020, accessed 8.12.2023.

[31] WHATWG, “HTML Standard: 4 The elements of HTML,” https:
//html.spec.whatwg.org/multipage/semantics.html#semantics, accessed
8.12.2023.

[32] ——, “HTML Standard: 13.2 Parsing HTML documents,” https://html.
spec.whatwg.org/multipage/parsing.html, accessed 8.12.2023.

[33] ——, “HTML Standard: 4.8.5 the iframe element,” https:
//html.spec.whatwg.org/multipage/iframe-embed-object.html#the-
iframe-element, accessed 8.12.2023.

[34] ——, “HTML Standard: 3.2.5.1 the ”nothing” content model,”
https://html.spec.whatwg.org/multipage/dom.html#the-nothing-
content-model, accessed 8.12.2023.

[35] ——, “HTML Standard: 13.2.2 Parse errors,” https://html.spec.whatwg.
org/multipage/parsing.html#parse-errors, accessed 8.12.2023.

[36] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda,
C. Kruegel, and G. Vigna, “Saner: Composing Static and Dynamic
Analysis to Validate Sanitization in Web Applications.” in IEEE
Symposium on Security and Privacy, 2008.

[37] M. Alkhalaf, T. Bultan, and J. L. Gallegos, “Verifying Client-Side
Input Validation Functions using String Analysis,” in International
Conference on Software Engineering, 2012.

[38] M. Alkhalaf, A. Aydin, and T. Bultan, “Semantic Differential Repair
for Input Validation and Sanitization,” in International Symposium on
Software Testing and Analysis, 2014.

[39] S. Joshi, N. Agrawal, R. Krishnapuram, and S. Negi, “A Bag of Paths
Model for Measuring Structural Similarity in Web Documents,” in
International Conference on Knowledge Discovery and Data Mining,
2003.

[40] WHATWG, “HTML Standard: 13.2.5.2 RCDATA state,” https://
html.spec.whatwg.org/multipage/parsing.html#rcdata-state, accessed
8.12.2023.

[41] ——, “HTML Standard: 13.2.4.5 Parse state: Other parsing
state flags,” https://html.spec.whatwg.org/multipage/parsing.html#
other-parsing-state-flags, accessed 8.12.2023.

[42] ——, “HTML Standard: 13.2.2 Parse errors: cdata-in-html-content,”
https://html.spec.whatwg.org/#parse-error-cdata-in-html-content, ac-
cessed 8.12.2023.

[43] ——, “HTML Standard: 13.2.2 Parse errors: incorrectly-closed-

comment,” https://html.spec.whatwg.org/multipage/parsing.html#parse-
error-incorrectly-closed-comment, accessed 8.12.2023.

[44] ——, “HTML Standard: 13.2.6.4.16 The ”in select” insertion
mode,” https://html.spec.whatwg.org/multipage/parsing.html#parsing-
main-inselect, accessed 8.12.2023.

[45] T. Nidecki, “Mutation XSS in Google Search,” https://www.acunetix.
com/blog/web-security-zone/mutation-xss-in-google-search, 2019, ac-
cessed: 8.12.2023.

[46] W3C, “Document Structure – SVG 2,” https://svgwg.org/svg2-draft/
struct.html#DescriptionDefinitions, accessed 8.12.2023.

[47] M. Heiderich, C. Späth, and J. Schwenk, “DOMPurify: Client-Side
Protection against XSS and Markup Injection,” in ESORICS, 2017.

[48] W. Kahn-Greene, “bleach is deprecated; statement on project going
forward (2023-01-23),” https://github.com/mozilla/bleach/issues/698,
2023, accessed 8.12.2023.

[49] N. Demir, T. Urban, K. Wittek, and N. Pohlmann, “Our (in)Secure
Web: Understanding Update Behavior of Websites and Its Impact on
Security,” in Passive and Active Network Measurement Conference,
2021.

[50] web-platform-tests contributors, “The web-platform-tests project,”
https://github.com/web-platform-tests/wpt, accessed 8.12.2023.

[51] Y. Nadji, P. Saxena, and D. Song, “Document structure integrity:
A robust basis for cross-site scripting defense.” in Network and
Distributed System Security Symposium, 2009.

[52] M. V. Gundy and H. Chen, “Noncespaces: Using randomization to
enforce information flow tracking and thwart cross-site scripting
attacks.” in Network and Distributed System Security Symposium,
2009.

[53] M. Steffens, M. Musch, M. Johns, and B. Stock, “Who’s Hosting the
Block Party? Studying Third-Party Blockage of CSP and SRI,” in
Network and Distributed System Security Symposium, 2021.

[54] M. Weissbacher, T. Lauinger, and W. K. Robertson, “Why Is CSP
Failing? Trends and Challenges in CSP Adoption,” in Research in
Attacks, Intrusions and Defenses, 2014.

[55] S. Calzavara, A. Rabitti, and M. Bugliesi, “Content security problems?:
Evaluating the effectiveness of content security policy in the wild,” in
Conference on Computer and Communications Security, 2016.

[56] L. Weichselbaum, M. Spagnuolo, S. Lekies, and A. Janc, “CSP is dead,
long live CSP! On the insecurity of whitelists and the future of content
security policy,” in Conference on Computer and Communications
Security, 2016.

[57] S. Roth, T. Barron, S. Calzavara, N. Nikiforakis, and B. Stock,
“Complex Security Policy? A Longitudinal Analysis of Deployed
Content Security Policies,” in Network and Distributed Systems
Security, 2020.

[58] R. Grove, “Insufficient neutralization of ‘style‘ element content may
allow XSS in Sanitize,” https://github.com/rgrove/sanitize/security/
advisories/GHSA-f5ww-cq3m-q3g7, 2023, accessed 8.12.2023.

[59] L. Bernhard, T. Scharnowski, M. Schloegel, T. Blazytko, and T. Holz,
“JIT-Picking: Differential Fuzzing of JavaScript Engines,” in Confer-
ence on Computer and Communications Security, 2022.

[60] H. Han, D. Oh, and S. K. Cha, “CodeAlchemist: Semantics-Aware
Code Generation to Find Vulnerabilities in JavaScript Engines,” in
Network and Distributed System Security Symposium, 2019.

[61] S. Groß, S. Koch, L. Bernhard, T. Holtz, and M. Johns, “Fuzzilli:
Fuzzing for JavaScript JIT Compiler Vulnerabilities,” in Network and
Distributed Systems Security, 2023.

[62] W. Xu, S. Park, and T. Kim, “FREEDOM: Engineering a State-of-the-
Art DOM Fuzzer,” in Conference on Computer and Communications
Security, 2020.

[63] S. Kim, Y. M. Kim, J. Hur, S. Song, G. Lee, and B. Lee, “FuzzOrigin:
Detecting UXSS vulnerabilities in browsers through origin fuzzing,”
in USENIX Security Symposium, 2022.

[64] T. Petsios, A. Tang, S. J. Stolfo, A. D. Keromytis, and S. Jana,
“NEZHA: Efficient Domain-Independent Differential Testing,” in IEEE
Symposium on Security and Privacy, 2017.

[65] J. Hur, S. Song, D. Kwon, E. Baek, J. Kim, and B. Lee, “DifuzzRTL:
Differential Fuzz Testing to Find CPU Bugs,” in IEEE Symposium on
Security and Privacy, 2021.

[66] B. Jabiyev, S. Sprecher, K. Onarlioglu, and E. Kirda, “T-Reqs: HTTP
Request Smuggling with Differential Fuzzing,” in Conference on

https://html.spec.whatwg.org/multipage/parsing.html#fragment-case
https://html.spec.whatwg.org/multipage/parsing.html#fragment-case
https://source.chromium.org/chromium/chromium/src/+/main:third_party/blink/renderer/core/html/parser/html_document_parser_fastpath.cc
https://source.chromium.org/chromium/chromium/src/+/main:third_party/blink/renderer/core/html/parser/html_document_parser_fastpath.cc
https://source.chromium.org/chromium/chromium/src/+/main:third_party/blink/renderer/core/html/parser/html_document_parser_fastpath.cc
https://www.w3.org/TR/MathML3
https://svgwg.org/svg2-draft
https://svgwg.org/svg2-draft
https://html.spec.whatwg.org/multipage/parsing.html#parsing-main-inforeign
https://html.spec.whatwg.org/multipage/parsing.html#parsing-main-inforeign
https://github.com/ias-tubs/HTML_parsing_differentials
https://github.com/ias-tubs/HTML_parsing_differentials
https://research.securitum.com/html-sanitization-bypass-in-ruby-sanitize-5-2-1
https://research.securitum.com/html-sanitization-bypass-in-ruby-sanitize-5-2-1
https://research.securitum.com/dompurify-bypass-using-mxss
https://research.securitum.com/mutation-xss-via-mathml-mutation-dompurify-2-0-17-bypass
https://research.securitum.com/mutation-xss-via-mathml-mutation-dompurify-2-0-17-bypass
https://securityboulevard.com/2020/07/mutation-cross-site-scripting-mxss-vulnerabilities-discovered-in-mozilla-bleach
https://securityboulevard.com/2020/07/mutation-cross-site-scripting-mxss-vulnerabilities-discovered-in-mozilla-bleach
https://securityboulevard.com/2020/07/mutation-cross-site-scripting-mxss-vulnerabilities-discovered-in-mozilla-bleach
https://html.spec.whatwg.org/multipage/semantics.html#semantics
https://html.spec.whatwg.org/multipage/semantics.html#semantics
https://html.spec.whatwg.org/multipage/parsing.html
https://html.spec.whatwg.org/multipage/parsing.html
https://html.spec.whatwg.org/multipage/iframe-embed-object.html#the-iframe-element
https://html.spec.whatwg.org/multipage/iframe-embed-object.html#the-iframe-element
https://html.spec.whatwg.org/multipage/iframe-embed-object.html#the-iframe-element
https://html.spec.whatwg.org/multipage/dom.html#the-nothing-content-model
https://html.spec.whatwg.org/multipage/dom.html#the-nothing-content-model
https://html.spec.whatwg.org/multipage/parsing.html#parse-errors
https://html.spec.whatwg.org/multipage/parsing.html#parse-errors
https://html.spec.whatwg.org/multipage/parsing.html#rcdata-state
https://html.spec.whatwg.org/multipage/parsing.html#rcdata-state
https://html.spec.whatwg.org/multipage/parsing.html#other-parsing-state-flags
https://html.spec.whatwg.org/multipage/parsing.html#other-parsing-state-flags
https://html.spec.whatwg.org/#parse-error-cdata-in-html-content
https://html.spec.whatwg.org/multipage/parsing.html#parse-error-incorrectly-closed-comment
https://html.spec.whatwg.org/multipage/parsing.html#parse-error-incorrectly-closed-comment
https://html.spec.whatwg.org/multipage/parsing.html#parsing-main-inselect
https://html.spec.whatwg.org/multipage/parsing.html#parsing-main-inselect
https://www.acunetix.com/blog/web-security-zone/mutation-xss-in-google-search
https://www.acunetix.com/blog/web-security-zone/mutation-xss-in-google-search
https://svgwg.org/svg2-draft/struct.html#DescriptionDefinitions
https://svgwg.org/svg2-draft/struct.html#DescriptionDefinitions
https://github.com/mozilla/bleach/issues/698
https://github.com/web-platform-tests/wpt
https://github.com/rgrove/sanitize/security/advisories/GHSA-f5ww-cq3m-q3g7
https://github.com/rgrove/sanitize/security/advisories/GHSA-f5ww-cq3m-q3g7

Computer and Communications Security, 2021.
[67] G. S. Reen and C. Rossow, “DPIFuzz: A Differential Fuzzing

Framework to Detect DPI Elusion Strategies for QUIC,” in Annual
Computer Security Applications Conference, 2020.

[68] C. Brubaker, S. Jana, B. Ray, S. Khurshid, and V. Shmatikov,
“Using Frankencerts for Automated Adversarial Testing of Certificate
Validation in SSL/TLS Implementations,” in IEEE Symposium on
Security and Privacy, 2014.

[69] S. Wi, T. T. Nguyen, J. Kim, B. Stock, and S. Son, “DiffCSP:
Finding Browser Bugs in Content Security Policy Enforcement through
Differential Testing,” in Network and Distributed System Security
Symposium, 2023.

[70] B. Stock, S. Lekies, T. Mueller, P. Spiegel, and M. Johns, “Precise
Client-side Protection against DOM-based Cross-Site Scripting,” in
USENIX Security Symposium, 2014.

[71] M. Steffens, C. Rossow, M. Johns, and B. Stock, “Don’t Trust the
Locals: Investigating the Prevalence of Persistent Client-Side Cross-
Site Scripting in the Wild.” in Network and Distributed System Security
Symposium, 2019.

[72] M. T. Louw and V. N. Venkatakrishnan, “Blueprint: Robust preven-
tion of cross-site scripting attacks for existing browsers.” in IEEE
Symposium on Security and Privacy, 2009.

[73] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and M. Veanes,
“Fast and Precise Sanitizer Analysis with BEK.” in USENIX Security
Symposium, 2011.

[74] G. Argyros, I. Stais, A. Kiayias, and A. D. Keromytis, “Back in Black:
Towards Formal, Black Box Analysis of Sanitizers and Filters,” in
IEEE Symposium on Security and Privacy, 2016.

[75] J. Dahse and T. Holz, “Experience Report: An Empirical Study of
PHP Security Mechanism Usage,” in International Symposium on
Software Testing and Analysis, 2015.

Appendix A.
Implementation

The payload generation is based on randomly selecting
a sequence of transformations to consecutively build up the
final payload.

Whenever a transformation or one of its parameters is
selected, each option is chosen with a relative probability
P. Take the div and br tags as an example, their relative
probabilities are: P(div) = 1.0 and P(br) = 0.5. This means
MutaGen generates twice as many div tags as br tags.

A.1. Parameterized Transformations

Most of the transformations applied by MutaGen are
parameterized. We now give a short overview of the different
parameter types, their respective values, and how likely they
are applied.
payload(): This function returns an initial payload. They are
chosen from the following set: {Img, Image, Script}
with relative probability of P(Img) = 0.6, P(Image) = 0.2,
P(Script) = 0.2. Each payload is serialized as follows:

• Img:
• Image: <image src=x onerror=f()>
• Script: <script>f()</script>

We decided to mainly generate XSS payloads based on img
tags as it is the most universally applicable tag.
place(): Returns whether the transformation should change
the beginning or the end of P , returning either Prepend
or Append with equal probability.

encoding(): Returns an encoding function applicable to
another value. Possible values are {None, Xml} with
P(None) = 0.4 and P(Xml) = 0.1.
quote(): This function returns an optionally encoded
quote character. Possible values are chosen from:
{Backtick(e), Single(e), Double(e)} where e = encoding()
with respective probabilities of P(Single) = 0.45,
P(Double) = 0.45 and P(Backtick) = 0.1.

This function is used to determine how attributes are
quoted. Only single and double quotes are valid according
to the specification, so they are generated more frequently.
quoted(v): Determines how an attribute’s value (provided
as v) is quoted. Possible values are chosen from the set:

{Unquoted, Enclosed(quote()),
Front(quote()), Back(quote()),

Mixed(quote(), quote())}

Unquoted results in an unquoted value and Mixed in a
value with potentially mismatching quotes, depending on
the return values of its parameters. Both Front and Back
result in a quote on either side of the value, and Enclosed
properly quotes the value. Their respective probabilities
are P(Unquoted) = 0.5, P(Mixed) = 0.25, P(Front) =
0.25, P(Back) = 0.25 and P(Enclosed) = 1.0.
attr key(): Returns a string from the set
{id, name, title, foo, data-foo} with equal
probability. We chose this selection to cover different
attribute types that do not execute JavaScript on their own.
We avoided generating event handlers that might directly
cause JavaScript execution, as testing the completeness of
block lists would offer no additional insight into the parsing
behavior.
attr form(): To represent invalid attribute values, we in-
troduce the possibility of generating incorrectly format-
ted attributes. This function returns values from the set
{Regular, Space, Slash}, modeling such issues. Their
probabilities are P(Regular) = 0.9, P(Space) = 0.05 and
P(Slash) = 0.05.
attr(v): Generates a potentially quoted HTML attribute with
the value v. Based on the return values of k = attr key(),
f = attr form() and q = quoted() an attribute is se-
rialized as follows: An attribute is serialized as follows
k = quoted(v) if f = Regular. For f equals Space, a

whitespace character precedes the value, and if f is Slash,
the initial space is replaced with a slash character.
tag(): Selects one of the HTML, SVG, or MathML tags
listed in Table 7 with a sequence of attributes with static
values. The relative probabilities for each tag are provided
in column P. These probabilities were assigned manually
to group similar elements such as mi, mo, mn, and ms to
uncover a wide breadth of different payloads.
bracket(): Returns either an opening or closing angle bracket
with equal possibility.
bang(): Selects whether the generated XML comment should
be closed according to the HTML specification (i.e., -->)
or with a bang comment (i.e., --!>). Values are chosen
from the set: {No_bang,Bang} with equal probability.

Table 6: Complete List of Transformations Applied to the Accumulated Payload P

Name P Parameters Effect Description

Payload pl = payload() P = pl Select an initial Payload

Open tag 1.0
t = tag()

p = place()
P =

{
<t>P, if p = Prepend
P<t>, if p = Append

Add opening tag t to P

Self closing tag 1.0
t = tag(),

p = place()
P =

{
<t/>P, if p = Prepend
P<t/>, if p = Append

Add self closing tag t to P

Enclose tag 1.0 t = tag() P = <t>P</t> Enclose P in tag t

Enclose tag attr 0.75
t = tag(),

a = attr()
P = <t a(P)> Enclose P in attribute a of tag t

Close tag 1.0
t = tag()

p = place()
P =

{
</t>P, if p = Prepend
P</t>, if p = Append

Add closing tag t to P

Open XML Comment 0.125 p = place() P =

{
<!- -P, if p = Prepend
P<!- -, if p = Append

Add opening XML comment to P

Close XML Comment 0.125
p = place(),

b = bang()
P =

{
- -b>P, if p = Prepend
P- -b>, if p = Append

Add closing XML comment to P

Enclose XML Comment 0.125 b = bang() P = <!- -P- -b> Enclose P with XML comment
Enclose JS Comment 0.01 P = /*P*/ Enclose P in JavaScript comment

Open JS Comment 0.005 p = place() P =

{
/*P, if p = Prepend
P/*, if p = Append

Add opening JavaScript comment to P

Close JS Comment 0.005 p= place() P =

{
*/P, if p = Prepend
P*/, if p = Append

Add closing JavaScript comment to P

Enclose CDATA 0.05 P = <!CDATA[P]]> Enclose P in CDATA section.

Begin CDATA 0.05 p = place() P =

{
<!CDATA[P, if p = Prepend
P<!CDATA[, if p = Append

Add begin CDATA directive to P

End CDATA 0.05 p = place() P =

{
]]>P, if p = Prepend
P]]>, if p = Append

Add end CDATA directive to P

Parsing directive 0.05 p = place() P =

{
<!P, if p = Prepend
P<!, if p = Append

Add incomplete parsing directive to P

Angle bracket 0.2
p = place(),

b = bracket()
P =

{
bP, if p = Prepend
Pb, if p = Append

Add angle bracket b to P

Quote 0.25
q = quote(),

p = place()
P =

{
qP, if p = Prepend
Pq, if p = Append

Add a quote to P

Space 1.00 p = place() P =

{
P, if p = Prepend
P , if p = Append

Add a space to P

XML Encode 0.025 P = xml_encode(P) Perform XML encoding on P
EncodeURI 0.0005 P = encodeURI(P) Perform URI encoding on P
EncodeURIComponent 0.0005 P = encodeURIComponent(P) Perform URI Component encoding on P
⊥ 0.05 P Terminate the generation run

Table 7: Tags Generated by MutaGen and their Selection Criteria

Tag P NS (*) Selection Criteria

img H Typical XSS payloads
script
image H, S, M In HTML treated as img, valid SVG or MathML element
div 1.0

H

Basic HTML elements, terminate foreign content
span 1.0
object 0.5 Basic HTML element.
form 1.0 form elements can not be nested, enforced by parsing specification
dfn 1.0 Both can not be nested, not enforced by parsing specification
header 1.0
p 0.5 Optional end tag, terminates foreign content
br 0.5 No end tag, no content allowed, terminate foreign content
embed 0.5
input 1.0 No end tag, no content allowed
a 1.0 No interactive content allowed, e.g., iframe, not enforced by parsing specification
noscript 1.0 Parsed differently depending on scripting flag: either HTML or JavaScript content
table 0.25 Opens a table, parsing specification enforces no nesting, terminates foreign content
td 0.25

Restrictive content, together they make up a tabletr 0.25
colgroup 0.25
select 1.0 Only option, optgroup and script-supporting content allowed. Special parsing rules when inside table
option 1.0 Restrictions on where it can occur, depending on attribute values allowed content changes
textarea 1.0 Only text content
keygen 1.0 Not supported anymore, no content, no end tag.
xmp 1.0 No element specification anymore, still has parsing rules, used to render markup as text without executing it
frameset 0.5 No element specification anymore, still has parsing rules
listing 1.0 No element specification anymore, still has parsing rules, used to display code
li 0.5 Make up a list, allowed to contain script-supporting elements, terminate foreign content
ul 0.5
pre 1.0 Only allowed to contain phrasing content, terminate foreign content
var 1.0
dl 0.5 Restricted content model, terminates foreign content
dt 0.5 Shall only occur inside dl, terminates foreign content
plaintext 1.0 Deprecated. Renders everything below as plain text. Can not be closed
noframes 1.0 No element specification anymore, still have parsing rules. Contain raw text content
noembed 1.0
iframe 1.0 iframe element specification says no content allowed, but parsing specification says raw text content
svg 1.0

S

Namespace transition from H to S
foreignObject 1.0

Allow to embed HTML segments inside a SVGdesc 1.0
path 1.0
math 1.0

M

Namespace transition from H to M
mtext 0.5

Allow to embed HTML segments inside MathML

mglyph 0.5
mi 0.25
mo 0.25
mn 0.25
ms 0.25
annotation-xml 1.0
style 1.0 H, S Text content when in H, otherwise markup
font 1.0 Deprecated for both HTML and SVG

title 1.0
H Text content, Singleton: not enforced by parsing specification
S Can contain markup

*: H: HTML namespace, S: SVG namespace, M: MathML namespace

Appendix B.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

B.1. Summary

The paper conducts an analysis of server-side HTML
sanitization and parsing libraries and their vulnerabilities.
They evaluated 11 such libraries using their HTML fragment
generator MutaGen and uncovered security issues in nine
of them. The authors then categorize the root causes of
these vulnerabilities into five main parsing issues and two
serialization problems.

B.2. Scientific Contributions

• Identifies an Impactful Vulnerability
• Creates a New Tool to Enable Future Science

B.3. Reasons for Acceptance

1) Identifies an Impactful Vulnerability: This study offers
an examination of issues arising in sanitization libraries
as a result of incorrect parsing of HTML snippets.
Their findings show the existence of HTML parsing and
sanitization flaws that can lead to significant security
vulnerabilities, as evidenced by the presence of CVEs.

2) Creates a New Tool to Enable Future Science: MutaGen
or the design idea behind the tool might be interesting
for future research, e.g. altering the tool to focus on
stylesheet injections instead of XSS.

B.4. Noteworthy Concerns

1) The paper does not adequately explain the criteria for
selecting the analyzed sanitizers. The current selection
could be biased, and the results may not represent server-
side sanitizers that are actually used in the wild.

2) Some reviewers raised concerns that the approach does
not consider CSS injections.

	Introduction
	Background
	Complexities of HTML Parsing
	Cross-Site Scripting
	Sanitization
	Mutation Cross-Site Scripting

	Uncovering Parsing Differentials
	HTML Analysis
	MutaGen: HTML Fragment Generator
	Payload Sanitization
	Sanitizer Configuration

	Payload Evaluation

	Parsing Differentials: Prevalence and Impact
	Prevalence of Parsing Differentials
	Bag of XPaths Similarity Score

	Parsing Accuracy
	Classifying Parsing Deficiencies
	Parsing
	Serialization
	Affected Sanitizers

	Browser Parsing Differentials

	Discussion
	Foreign Content
	Weaponizing Sanitizers
	Disclosure Process
	Outlook
	Mitigating Sanitizer Bypasses
	Limitations & Future Work

	Related Work
	(Differential) Fuzzing of Web Technologies
	Cross-Site Scripting
	Sanitizer Analysis

	Conclusion
	Appendix A: Implementation
	Parameterized Transformations

	Appendix B: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance
	Noteworthy Concerns

