
General Data Protection Runtime:
Enforcing Transparent GDPR Compliance for Existing

Applications
David Klein

Technische Universität Braunschweig

david.klein@tu-braunschweig.de

Benny Rolle

SAP SE

benny.rolle@sap.com

Thomas Barber

SAP Security Research

thomas.barber@sap.com

Manuel Karl

Technische Universität Braunschweig

m.karl@tu-braunschweig.de

Martin Johns

Technische Universität Braunschweig

m.johns@tu-braunschweig.de

ABSTRACT

Recent advances in data protection regulations brings privacy ben-

efits for website users, but also comes at a cost for operators.

Retrofitting the privacy requirements of laws such as the General

Data Protection Regulation (GDPR) onto legacy software requires

significant auditing and development effort. In this work we demon-

strate that this effort can be minimized by viewing data protection

requirements through the lens of information flow tracking. Instead

of manual inspections of applications, we propose a lightweight

enforcement engine which can reliably prevent unlawful data pro-

cessing even in the presence of bugs or misconfigured software.

Taking GDPR regulations as a starting point, we define twelve

software requirements which, if implemented properly, ensure ad-

equate handling of personal data. We go on to show how these

requirements can be fulfilled by proposing a metadata structure

and enforcement policies for dynamic information flow tracking

frameworks. To put this idea into practice, we present Fontus, a Java

VirtualMachine (JVM) information flow tracking framework, which

can transparently label personal data in existing Java applications

in order to aid compliance with data protection regulations. Finally,

we demonstrate the applicability of our approach by enforcing data

protection polices across 7 large, open source web applications,

with no changes required to the applications themselves.

CCS CONCEPTS

• Security and privacy→ Information flow control;

KEYWORDS

GDPR Enforcement, Taint-Tracking, Data Protection, Privacy

ACM Reference Format:

David Klein, Benny Rolle, Thomas Barber, Manuel Karl, and Martin Johns.

2023. General Data Protection Runtime: Enforcing Transparent GDPR Com-

pliance for Existing Applications. In Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’23), November

This work is licensed under a Creative Commons Attribution-

NonCommercial-ShareAlike International 4.0 License.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0050-7/23/11.

https://doi.org/10.1145/3576915.3616604

26–30, 2023, Copenhagen, Denmark. ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3576915.3616604

1 INTRODUCTION

The ubiquity of web applications inmodern life has led to increasing

tensions between their operators and users. While companies have

seen the value in collecting user’s data for marketing or advertising

purposes, the users themselves want to restrict such data collection

to protect their own privacy. These concerns have been enshrined in

legislation, with data protection laws imposing strict restrictions on

the collection and processing of personal data, with severe penalties

for non-compliance. In particular, the European Union’s General

Data Protection Regulation [9] (GDPR) can impose penalties of

up to 20 million Euro, or up to 4% of the total worldwide annual

turnover, whichever is higher, leading to significant fines [e.g.,

4, 34, 35]. Companies therefore have a strong financial incentive

to process personal data in a compliant manner, and may even

consider offering increased privacy protection as a competitive

feature.

However, enforcing data protection policies such as the GDPR

poses a significant challenge for website developers and opera-

tors. For example, consider a modern enterprise web application

utilizing the Java Spring Boot framework [51] to implement an

e-commerce application. When purchasing items, a user provides

personal information such as their e-mail and postal address in

order to purchase goods on the site. During this process, their per-

sonal data will be processed by multiple components in the Spring

stack: from the HTML form in the user’s browser, via Java code

in the Spring back-end, to storage in an SQL database. Tracking

the usage of personal data in even the simplest web applications

quickly becomes a near-impossible task, especially considering that

even the Spring PetClinic reference application [47] loads over

11,200 classes and requires downloading of 113 packages from the

Maven Central repository. This difficulty is confirmed by recent

studies [37], which find 751 GDPR fines issued since 2018 due to

unauthorized data processing. Spiekermann accurately summarizes:

“Data is like water: it flows and ripples in ways that are difficult to

predict” [44, p. 38].

A number of mechanisms have been proposed to aid develop-

ers create applications which are compliant with the GDPR. For

example, Ferrara et al. [14] propose a technique to statically detect

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3576915.3616604
https://doi.org/10.1145/3576915.3616604

CCS ’23, November 26–30, 2023, Copenhagen, Denmark David Klein, Benny Rolle, Thomas Barber, Manuel Karl, and Martin Johns

GDPR violations, but do not allow dynamic evaluation of com-

pliance based on an individual user’s consent. Mehta et al. [31]

consider attaching policies to database entries, but do not consider

the rest of the application stack. On the other hand, Wang et al.

[52] propose a system which ensures lawful data processing across

an entire application, but rely on the presence of dedicated trusted

hardware.

Instead, we present a framework for web applications which

can dynamically enforce GDPR policies based on an individual

user’s consent. Our approach leverages non-intrusive dynamic

information-flow tracking in the form of tainting and therefore

requires no modification of (or even access to) an application’s

source code, while preventing GDPR violations even in complex

applications with a large number of rapidly changing dependencies.

We propose transparently attaching a user’s consent preferences

and further metadata to personal data as it enters a web application.

By tracking the propagation of the labels during program execu-

tion, we can enforce restrictions on the processing of data which

would otherwise violate the GDPR, for example, due to bugs or

misconfiguration of the software. At the same time, our framework

can assist operators to perform other activities related to the GDPR,

such as maintaining a record of processing activities or data breach

notifications. To summarize, our contributions are the following:

• Twelve software requirements which, when implemented

correctly, can help to prevent GDPR violations.

• Metadata structures and propagation rules for information

flow tracking which fulfill said requirements, and can be

used to automate GDPR policy enforcement.

• A dynamic taint tracking engine for Java applications with

support for persisting taint information into SQL databases.

• Integration of the GDPR policy enforcement concept into

our taint engine, demonstrating its feasibility on three major

open source Java web applications.

The remainder of this paper is structured as follows: we first

introduce the required legal and technical background information

(Section 2) and derive twelve software requirements enabling lawful

processing of personal data under the GDPR (Section 3). We then

map these requirements onto ametadata structure for dynamic data-

flow tracking (Section 4). We go on to show how this concept can

be realized in practice for modern web applications (Section 5). Af-

terwards we present Fontus, our prototype implementation which

integrates support for such data protection enforcement into a taint

tracking engine for the Java Virtual Machine (JVM) (Section 6). We

continue by demonstrating the practical viability of our approach

(Section 7) with 7 large, open source web applications. Lastly, we

discuss our findings and challenges (Section 8), related work (Sec-

tion 9) and finally conclude in Section 10.

We also prepared a supplemental document with additional

information about the performance evaluation. It is available at

https://github.com/ias-tubs/gdpr_tainting.

2 BACKGROUND

First, we give a broad overview of the GDPR which governs the

processing of personal data within the EU. Secondly, we explain

the fundamental concepts of dynamic information flow tracking

techniques which we build on later in the paper. Unless otherwise

indicated, references to Articles (Art.) and Recitals (Rec.) below

refer to the GDPR.

2.1 Personal Data Processing under GDPR

The central term in data protection law is personal data: The Char-
ter of Fundamental Rights of the European Union (CFR) states in

Art. 8(1) that “Everyone has the right to the protection of personal

data concerning him or her”. Art. 4(1) GDPR defines “personal data”

as “any information relating to an identified or identifiable natural

person (‘data subject’).” In the EU, the principle of prohibition with

reservation of permission applies to the processing of personal data

(Art. 6(1) GDPR, Art. 8(2) CFR), meaning that personal data can

only be processed if backed up with a legal basis. In addition, for

the lawful processing of personal data, further principles must be

complied with. These include, among others:

• Purpose limitation: The purposes for which the data are pro-

cessed must be determined prior to processing (Art. 5(1)(b)).

• Data minimization: The amount of processed personal data

must be limited to what is necessary for the respective pur-

pose (Art. 5(1)(c)).

• Storage limitation: Personal data must not be stored longer

than necessary, and must be deleted or anonymized when

no longer required for the purposes for which they are pro-

cessed (Art. 5(1)(e)).

To be compliant with the GDPR, data controllers – i.e., the legal or

natural persons who determine for which purposes and with which

means personal data are processed – must comply with these and

other principles and be able to demonstrate compliance with them

(Art. 5(2)). In addition, data subjects have extensive rights regarding

the data concerning them, including the right of access (Art. 15),

rectification (Art. 16), erasure (Art. 17), restriction of processing

(Art. 18), data portability (Art. 20) and the right to object (Art. 21).

Data controllers must therefore be able to provide a data subject,

upon request, with themeta-information defined in Art. 15(1) on the

processing of the data concerning them, as well as a copy of the data

themselves. The data controller, upon request of the data subject,

must also be able to rectify the data if they are inaccurate; be able

to erase the data if they may no longer be processed; and be able

to restrict the processing for certain purposes. In addition, a data

controller should be able to determine whether a particular piece

of data needs to be transferred under the right to data portability.

Regulations similar to the GDPR exist around the world. To name

a few: California’s Consumer Privacy Act (CCPA), Japan’s Act on

the Protection of Personal Information (APPI) as well as South

Africa’s Protection of Personal Information Act (POPI Act) all con-

tain similar principles, including provisions for purpose limitation.

2.2 Dynamic Information Flow Tracking

Information Flow tracking is concerned with measuring the prop-

agation of data through a system. Studied since the 70s, e.g., [13],

information flow control systems are used to ascertain both confi-

dentiality and security properties of programs. They trace the flow

of data from a source, e.g., user input, to functions with security

or confidentiality implications, so-called sinks. This can either be

done statically, by constructing and analysing the data flow graph

of an application, or dynamically, by labeling data with metadata

https://github.com/ias-tubs/gdpr_tainting

Enforcing Transparent GDPR Compliance for Existing Applications CCS ’23, November 26–30, 2023, Copenhagen, Denmark

and propagating those labels during program execution. In this

work, we concern ourselves mainly with dynamic taint tracking,

a form of dynamic information flow tracking. In this approach,

the tainting framework transparently attaches labels to program

data when they leave a source function. Throughout the program’s

execution, the metadata structure must be correctly propagated,

even during operations that copy or modify the original data. Upon

reaching a sink, the metadata can be extracted and if the data flow

into a certain sink is undesired, the runtime can act accordingly,

e.g., by blocking the operation. The lifecycle and processing of the

metadata can be divided into three steps: Introduction, referring
to the selective tainting of data at sources using defined policies.

Propagation which refers to the preservation of metadata when the

data are processed. Checking denotes the evaluation of metadata

entering sinks and acting upon unintended data flows [40]. A wide

range of academic work has covered automated vulnerability [e.g.,

20, 24, 32] and privacy leak [e.g., 12, 55] detection with tainting.

3 SOFTWARE REQUIREMENTS FOR GDPR

Our goal is to design a framework to aid GDPR compliance for web

applications via non-intrusive dynamic data-flow tracking. In order

to do this, we first we examine the obligations set out by the GDPR

with relation to software.

3.1 Roles and Threat Model

We start by defining four key roles: data subjects (e.g., users), the

data controller, data recipients and developers. Personal data con-

cerning a data subject is collected and processed by the data con-

troller via code written by the developers. The data can further

be processed by the data recipients for certain purposes. The data

subject expects the data controller to process personal data in a

compliant way, which requires the data controller to comply with

their obligations under the GDPR. On the other hand, both data

recipients and developers are honest but reckless, meaning they

might unintentionally analyze data (e.g., via software bugs) in a

way which violates data privacy regulations or add features that

are add odds with said regulations. Traditionally, fixing these bugs

requires additional effort on behalf of the data controller (via soft-

ware development) to ensure compliance. We aim to minimize this

effort by automatically controlling the flow of personal data in the

application. To do so we assume that the data controller has full

transparency into the web application’s functionality, but may not

have the resources or ability to fix privacy violating code (e.g., due

to closed third-party libraries). Note that it is not our aim to protect

against malicious data controllers or recipients who intentionally

introduce compliance violations into their code.

3.2 Compliance with Predefined Policies

The information requirements in Art. 13 and Art. 14 oblige the data

controller to determine the processing rules in advance and to pro-

vide certain information to the data subject, including the purposes

of the processing, the recipients of the data, and the storage period.

This leads to the following requirements:

(Req. 1) Purpose Limitation Software must process personal

data only for previously defined purposes (Art. 5(1)(b), and conse-

quence of Art. 13(1)(c), Art. 14(1)(c)).

(Req. 2) Recipients Software must transfer personal data only

to specified recipients or categories of recipients (consequence of

Art. 13(1)(e), Art. 14(1)(e)).

(Req. 3) Storage Period Software must provide a feature to

erase personal data after the previously established storage period

has expired or, if the storage period cannot be established before-

hand, after the storage criteria do no longer apply (Art. 5(1)(c), and

consequence of Art. 13(2)(a), Art. 14(2)(a)).

Other information obligations fromArt. 13 and Art. 14 are merely

informative in nature, without having a significant influence on

the data processing in software.

3.3 Ensuring an Adequate Level of Protection

The risks to the rights and freedoms of natural persons posed by

the processing of personal data vary depending on the context

and must be taken into account when determining an adequate

level of protection (Art. 32). For example, the processing of special

categories of personal data under Art. 9 might require a higher

level of protection than the processing of personal data of other

categories. Hence:

(Req. 4) Protection Level Software must ensure at least

an adequate level of protection when processing personal data.

Note that the meaning of adequate is context specific and must be

determined on a case-by-case basis.

3.4 Reacting to Data Subject Requests

Chapter 3 of the GDPR provides comprehensive data subject rights.

Software must support the data controller in responding to data

subject requests.

(Req. 5) Right of Access Software must allow the search of

its database in such a way that the personal data concerning a data

subject can be extracted. The data controller must be able to provide

the data subject with a copy of the personal data concerning them

(Art. 15(3)).

(Req. 6) Context Software must provide information on the

processing purposes, category, recipients and storage period of

personal data (Art. 15(1)(a–d)). In addition, if the personal data

were not collected from the data subject, any available information

about the origin of the data must also be provided (Art. 15(1)(g)).

(Req. 7) Rectification Software must allow the correction

of inaccurate personal data concerning a data subject (Art. 16).

(Req. 8) Erasure Software must allow personal data concern-

ing a data subject to be erased (Art. 17).

(Req. 9) Restriction Software must allow the restriction of

processing of personal data and the ability to remove this restriction

at a later point in time (Art. 18).

(Req. 10) Actual Recipients Software must enable the data

controller to know the actual recipients of personal data (so that

she can inform them of rectification, erasure and restriction of

processing requests under Art. 19(1) and the data subject under

Art. 19(2)).

(Req. 11) Data Portability Software must allow the export,

in a common machine-readable format, of those personal data con-

cerning a data subject that are subject to the right to data portability.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark David Klein, Benny Rolle, Thomas Barber, Manuel Karl, and Martin Johns

That is, data provided by the data subject to the data controller and

processed on the basis of the data subject’s consent or for the per-

formance of a contract which the data subject is party to (Art. 20).

(Req. 12) Objection Software must not process personal data

for certain purposes if the data subject objects to the processing of

such purposes and such objection is justified (Art. 21, e.g., in case

of direct marketing purposes, para. 3).

4 DATA PROTECTION VIA TAINT TRACKING

In the following, we first propose a metadata structure necessary to

fulfill all twelve requirements defined above. We go on to describe

a mechanism to explicitly associate application data with its meta-

data and propagate this information at run time using dynamic

information flow tracking.

4.1 Metadata Structure

Based on the twelve software requirements, we define the metadata

𝑀 as the tuple ⟨𝑄, 𝑓 , 𝑙, 𝑆, 𝑖, 𝑝, 𝑟 ⟩ associated to personal data 𝑑 as

follows:

Purpose, Recipient, Period (PRP): Given a set 𝑈 of possible

purposes and a set 𝑉 of possible data recipients to whom 𝑑 may be

transfered, we define 𝑄 = {𝑞0 . . . 𝑞𝑛}, where each 𝑞𝑖 = ⟨𝑢𝑖 , 𝑣𝑖 ⟩ is a
purpose-recipient pair such that 𝑢𝑖 ∈ 𝑈 and 𝑣𝑖 ∈ 𝑉 . For each entry

𝑞𝑖 , we also define a time period for which processing is allowed,

described by the mapping 𝑓 : 𝑄 → 𝐸, where 𝐸 is a set of valid time

periods. To this end we also define a function isValid(e) which
checks whether a given time period is valid.

Required Protection Level (RPL): The required protection level

for 𝑑 is defined as 𝑙 ∈ 𝐿, where 𝐿 is an ordered list of distinct pro-

tection levels. Note that the exact definition of 𝐿 must be specified

by the data controller for each application.

Data Subject (DS): A set 𝑆 = {𝑠0 . . . 𝑠𝑛} of data subjects associated
with 𝑑 . The value of 𝑠 can be a pseudonym or identifier (such as a

user ID) which uniquely defines users of an application.

Datum ID (DID): A unique identifier 𝑖 to refer to 𝑑 . We also define

a function newID() which generates new unique identifiers.

Qualification for the right to portability (QFP): A boolean

indicator 𝑝 ∈ {0, 1} of whether 𝑑 must be transferred under the

right to data portability. Practically this implies that for all data

provided directly by a single user, 𝑝 = 1.

Processing restricted (PR): Indication 𝑟 ∈ {0, 1} of whether the
processing of 𝑑 is restricted.

Table 1 maps the metadata attributes to the data-protection soft-

ware requirements introduced in Section 3. To fully implement a

requirement, all attributes associated with that requirement are

necessary. If some of the requirements are redundant, e.g., because

the data controller can handle its legal obligations in another way,

the metadata can be adapted accordingly.

4.2 Making Implicit Meta Information Explicit

The ability to infer whether an arbitrary piece of application data

is also personal data is practically impossible, and only becomes

apparent when examining the context in which the data are used.

For example, the string “corona” in an application may refer to a

brand of beer in an e-commerce framework, or a medical diagnosis

𝑠0

𝑠1

𝐼0

𝐼1

𝑃0

𝑃1

𝐶0

𝑁0 = ⟨{𝑞0}, . . .⟩

𝐶1

𝑁1 = ⟨{𝑞1}, . . .⟩

𝑞0 = ⟨𝑢0, 𝑣0⟩

Nurse

𝑞1 = ⟨𝑢1, 𝑣1⟩

𝑑0

𝑑1

𝑀0 = ⟨{𝑞0}, . . . , {𝑠0}⟩

𝑀1 = ⟨{𝑞0, 𝑞1}, . . . , {𝑠1}⟩

𝑑0, 𝑀0

𝑑1, 𝑀1

𝑑0, 𝑀0

𝑑2, 𝑀2 =

⟨{𝑞0}, . . . , {𝑠0, 𝑠1}⟩

𝑑0, 𝑀0 𝑑0

✗

Figure 1: Introduction, propagation and checking ofmetadata

during execution of a simple example application. Concepts

introduced in this paper are shown in red.

for a patient in a medical record system. In other words, it is im-

possible to infer 𝑀 by simple inspection of 𝑑 : instead we require

a mechanism to associate𝑀 with 𝑑 throughout its lifetime in the

application. However, modifying the application itself to provide

this functionality directly may require major changes or may even

be impossible in the case of third-party dependencies.

Therefore, we suggest a different approach: using non-intrusive

dynamic information flow tracking to attach𝑀 to 𝑑 at runtime. A

high level example illustrating our approach is provided in Figure 1,

which describes a simple hospital administration application. Here

we introduce two data subjects Alice (𝑠0) and Bob (𝑠1), and two

recipient-purpose pairs: a doctor using personal data for medical

diagnosis (𝑞0) and a laboratory using personal data for a study

(𝑞1). Both Alice and Bob submit metadata𝑀0 and𝑀1 respectively,

summarizing their consent preferences.
1
While Bob allows his data

to be used by both the doctor and the laboratory (𝑄1 = {𝑞0, 𝑞1}),
Alice wishes to restrict her data usage to the doctor only (𝑄0 =

{𝑞0}).
First, personal data enters an application during the introduction

step, where the information flow framework attaches metadata

detailing the data subject’s consent preferences. For example, in

Figure 1, Alice (𝑠0) submits personal data 𝑑0 to the application,

together with metadata𝑀0 summarizing her consent preferences.

1
Note that for illustrative purposes, only a subset of the metadata is shown in the

diagram.

Table 1: Mapping Metadata to Software Requirements

R
e
q
u
i
r
e
m
e
n
t

P
u
r
p
o
s
e
L
i
m
i
t
a
t
i
o
n

R
e
c
i
p
i
e
n
t
s

S
t
o
r
a
g
e
P
e
r
i
o
d

P
r
o
t
e
c
t
i
o
n
L
e
v
e
l

R
i
g
h
t
o
f
A
c
c
e
s
s

C
o
n
t
e
x
t

R
e
c
t
i
f
i
c
a
t
i
o
n

E
r
a
s
u
r
e

R
e
s
t
r
i
c
t
i
o
n

A
c
t
u
a
l
R
e
c
i
p
i
e
n
t
s

D
a
t
a
P
o
r
t
a
b
i
l
i
t
y

O
b
j
e
c
t
i
o
n

PRP

RPL

DS

DID

QFP

PR

Enforcing Transparent GDPR Compliance for Existing Applications CCS ’23, November 26–30, 2023, Copenhagen, Denmark

In the introduction step (𝐼0), Alice’s consent preferences (𝑀0) are

attached to 𝑑0 by the information flow tracking framework.

During program execution, the metadata are propagated along-

side the actual data throughout the program’s execution. For ex-

ample, during the propagation step 𝑃0 in Figure 1, the information

flow tracking framework must ensure that the metadata𝑀0 remain

associated to 𝑑0 on its output edge. In reality 𝑃0 could represent,

for example, writing 𝑑0 to a database, where the consent prefer-

ences must be correctly stored and subsequently re-attached when

the data are retrieved. Special care has to be taken when personal

data are combined, i.e., the application derives data from several

pieces of personal data. We define the combination of two metadata

𝑀0 = ⟨𝑄0, 𝑓0, 𝑙0, 𝑆0, 𝑖0, 𝑝0, 𝑟0⟩ and 𝑀1 = ⟨𝑄1, 𝑓1, 𝑙1, 𝑆1, 𝑖1, 𝑝1, 𝑟1⟩ as
𝑀2 = 𝑀0 + 𝑀1, with the propagation rules described in Table 2.

Note that the data portability is always set to false when resolv-

ing conflicts as the result of the operation, the derived data, was

not collected directly from the data subject, and therefore does

not qualify for portability [2]. For example, in Figure 1, Bob (𝑠1)

submits personal data 𝑑1, which is introduced in 𝐼1, and then com-

bined with Alice’s data (𝑑2) in propagation step 𝑃1. In this case

𝑀2 = ⟨{𝑞0} ∩ {𝑞0, 𝑞1} = {𝑞0}, . . . , {𝑠0} ∪ {𝑠1} = {𝑠0, 𝑠1}⟩, meaning

𝑑2 is now associated to both Alice and Bob, with consent provided

for 𝑞0 only.

Finally, in the checking stage, the data controller must define

a set of functions or interfaces in the application where data is

processed for a specific purpose or disclosed to a particular recipient.

Each of these functions is labeled with a tuple 𝑁 = ⟨𝑄 ′, 𝑙 ′⟩, where
𝑄 ′ = {𝑞′

0
. . . 𝑞′𝑛} is a set of purpose-recipient pairs: 𝑞′ = ⟨𝑢′, 𝑣 ′⟩,

where 𝑢′ ∈ 𝑈 , 𝑣 ′ ∈ 𝑉 associated with the function, and 𝑙 ′ is the
level of protection provided by the function. When personal data

with attached metadata 𝑀 enters a function with intent label 𝑁 ,

processing shall only be permitted under the following conditions:

𝑄 ′ ⊆ 𝑄 , in other words all processing purposes have been allowed

by the metadata. In addition, we require that the periods for each

purpose and recipient required by the function are all valid: defining

𝐸′ = {𝑒′ |𝑒′ = 𝑓 (𝑞′)}, we require that isValid(𝑒′) = 1 ∀𝑒′ ∈ 𝐸′.
Finally, we require that the protection level provided by the function

meets the protection level required by the metadata (𝑙 ′ ≥ 𝑙) and

that processing is not restricted (𝑟 = 0). Two examples are shown

in Figure 1: during checking stage 𝐶0, the data tracking framework

successfully checks that {𝑞0} ⊆ {𝑞0} and 𝑑0 is transfered to the

doctor. On the other hand, in 𝐶1 the checking step fails as {𝑞0} ⊈
{𝑞1} and 𝑑3 is therefore not transferred to the laboratory.

Table 2: Propagation Rules for Conflicting Metadata.

Metadata Resolution Rule

PRP Purpose, Recipients: Intersection:𝑄 = 𝑄1 ∩𝑄2

Period: Minimum: 𝑓 (𝑞) = min(𝑓1 (𝑞), 𝑓2 (𝑞)), ∀𝑞 ∈ 𝑄

RPL Maximum: 𝑙 = max(𝑙1, 𝑙2)
DS Union: 𝑆 = 𝑆1 ∪ 𝑆2

DID Re-generate: 𝑖 = newID()
QFP Value always no: 𝑝 = 0

PR Or: 𝑟 = 𝑟1 ∨ 𝑟2

HTTP Response

Data
Subject

Data Controller

SQL
Database

Consent Cookie

Consent Dialog
 Script

HTTP Request

POST HTTP/1.1
name=Alice
diagnosis=Covid

Application

External
Library

Third-Party

DB Query Utility

Fontus

So
ur

ce
s

Runtime Instrumentation

Si
nk

s

Subject Access
Request9

POST HTTP/1.1

name=Alice
diagnosis=Covid

Doctor

Lab
Study

example.com

Consent Dialog

1

2

3

4

5

6

7

8

OK

Third Party

Treatment
Lab Study

Figure 2: Data Protection via Dataflow Tracking

5 PROCESSING PERSONAL DATA

In this section we describe how the concepts defined in Section 4

can be used to construct a practical framework to aid GDPR com-

pliance for web applications. A graphical overview of the approach

is depicted in Figure 2, where we refer to steps 1 – 9 in the text

below.

5.1 System Configuration

The framework must first be appropriately configured by the data

controller before it can be deployed 1 , as follows: Firstly, any

functions which act as inputs for personal data (i.e., sources) must

be identified so that metadata objects𝑀 are correctly attached at

runtime. For example, in a web application, HTTP parameters from

an HTML form containing fields such as name and address should

be considered as personal data. In addition, a required protection

level 𝑙 has to be defined and attached to data leaving the source.

Secondly, the data controller must also construct 𝑁 for functions

or interfaces where data are used for a specific purpose and/or

by specific recipients (i.e., sinks). For each sink, an appropriate

mitigation must also be defined to execute if processing of data

with metadata𝑀 is not allowed.

Note that the data controller must have defined the purposes and

recipients anyhow prior to the processing in their data protection

policies by law, whether our approach is deployed or not. We there-

fore do not consider this step to introduce significant additional

overhead for the data controller.

5.2 Consent Assessment

A key question is how to assess which purposes and recipients

should be allowed for a particular piece of personal data. In other

words, how should the content of𝑄 be determined? To answer this

question we divide the options stated in Art. 6(1) into three groups:

user consent, user interaction and external circumstances.

User Consent via Cookie Dialogue. Art. 6(1)(a) states that one pos-
sibility for lawful data processing is consent from the data subject,

with primary conditions for consent regulated in Art. 7. We imple-

ment this scenario by intercepting all outgoing HTTP responses

and injecting a consent dialog script 2 . On first visiting a website,

the script triggers a pop-up asking the data subject to provide their

consent preferences𝑄 for the application 3 . For example, Figure 2

CCS ’23, November 26–30, 2023, Copenhagen, Denmark David Klein, Benny Rolle, Thomas Barber, Manuel Karl, and Martin Johns

shows the data subject (Alice) has only given consent for her per-

sonal data to be used to treat her symptoms. These preferences

are encoded and stored by the script in a browser cookie which

will be automatically sent to the application with every HTTP re-

quest 4 . The tainting framework detects incoming personal data

by instrumenting the source functions (typically HTTP requests)

defined by the data controller. If the instrumented code detects an

HTTP request containing personal data 5 , the tainting framework

can read the cookie, construct 𝑀 and attach it to 𝑑 . In case the

user interacting with the website is not the actual data subject, the

operator of the site needs to take care to ensure that the actual

data subject’s consent is available and correctly link it to the newly

introduced data.

User Interaction. Through interaction with the application, the

set of allowed purposes can change, e.g., if data processing is neces-

sary to fulfill a contract with the user. Thus, in addition to the cookie

based solution, our framework also allows one to dynamically aug-

ment allowed purposes resulting from particular interactions with

the application and are not explicitly requested via a dialog. For

example, consider an online shop where a shipping address is re-

quired to order items. During the order process the address can

then be dynamically tagged with the purpose shopping. Thus, it
is clear data was put into the system for the purpose of the order

and may not be used, for example, for unrelated brochures with

promotional offers.

External Circumstances. In the case of external circumstances,

the processing of personal data is lawful if the data controller has

legal obligations to comply with the operation in question, such as

the release of connection data at the request of an authority. These

legal obligations cannot be checked or applied to specific data by

automated means and are therefore, considered as out of scope.

5.3 Persistence of Metadata

If personal data is persisted, for example via storage in a database,

the associated metadata must also be stored 6 . Then, when per-

sonal data is retrieved from the database at a later point in time

(or by another application), the corresponding metadata must be

restored and re-associated. This is especially important when using

information flow tracking techniques to ascertain lawful process-

ing, as the timespan between data introduction and the processing

might span several years.

5.4 Preventing Unlawful Processing

In order to prevent processing of personal data for purposes which

are not allowed, our framework inserts hook functions which are

triggered before a sink function is executed. This hook function

will first check if incoming data has attached metadata, and if

so, whether it passes the checking requirements described in Sec-

tion 4.2. Note that sinks checks can be performed for both internal

processing of data 7 or when data is sent externally 8 . If the

checks are unsuccessful, the mitigation action associated with the

sink is executed to ensure that data protection policies are not vio-

lated. Our framework allows the definition of arbitrary mitigation

functions, and we describe two examples below:

Allowed Purposes: {A, B}

Protection Level: Normal

Data Subject: Alice

Data ID: 4549791

Qualified for Portability: Yes

Processing Restricted: No

H I A L I C E !

Taint Range

Purpose: A

Vendor: ACME Corp.

Expiry Date: 2025-01-01

Purpose: B

Vendor: Tyrell Corp.

Expiry Date: 2024-06-01

Figure 3: GDPR Taint Metadata

Removing Personal Data. The personal data which may not be

processed at the sink is simply removed. For example, instead of

the name “Alice”, the framework would return an empty string or

another value unrelated to any specific person.

Block Processing. Another option is to simply block execution

of the processing operation. This can be achieved by throwing an

exception or returning an empty value (i.e., null in Java) depending
on the application’s logic.

5.5 Rights of the Data Subject

Persisting the proposed metadata also allows the automatic realiza-

tion of several additional key aspects of data protection regulations

such as the GDPR. For example, access requests under Art. 15 can

be fulfilled by searching for all database entries with associated

metadata belonging to the requesting person 9 . Similarly, the

right to erasure under Art. 17 can be carried out by deleting all data

associated with a given data subject. Additionally, the portability

(Art. 20) of personal data can be ascertained by checking metadata

QFP. Finally, the withdrawal of consent can be realized by mod-

ifying the purpose and recipient entries in metadata PRP for the

requesting user.

6 IMPLEMENTATION

In the following, we describe our implementation of the approach

introduced in Section 5, including details of the data-flow tracking

engine, its persistence component, and how the resulting frame-

work can be transparently applied to existing Java applications.

6.1 Taint Engine

To realize dynamic data-flow tracking in Java applications, we

present Fontus, a non-intrusive taint tracking engine. Fontus imple-

ments tainting by rewriting the bytecode of Java classes when they

are loaded by the JVM. This rewriting step replaces instances of

string-like data types with our own taint-aware versions. This en-
compasses both data types directly storing strings, such as String,
StringBuilder but also data types manipulating strings such as

Formatter, Pattern and Matcher. The taint-aware classes contain
two fields: a reference to an underlying string-like instance, and

an associated taint metadata object. Bytecode rewriting ensures

that our technique is compatible with arbitrary JVM implementa-

tions, avoiding costs of maintaining a modified JVM, and allowing

deployment in scenarios where JVM choice is restricted, such as

platform-as-a-service offerings.

As shown in Figure 3, the taint metadata is structured as a list

of taint ranges, refering to a (sub) sequence of the string’s charac-

ters. Each range itself contains an implementation of the metadata

Enforcing Transparent GDPR Compliance for Existing Applications CCS ’23, November 26–30, 2023, Copenhagen, Denmark

1 public final class TaintString {
2 private String string;
3 private TaintMetadata metadata;
4

5 public TaintString concat(TaintString tstr) {
6 // Propagate metadata
7 TaintMetadata meta = metadata.concat(tstr.metadata);
8 // Perform string operation
9 return new TaintString(this.string.concat(tstr.string), meta);
10 }
11 }

Figure 4: Illustrative method from a taint aware string class

described in Section 4. This high level of granularity allows to eval-

uate the privacy implications of operations on a per-character basis,

even if data from several data subjects are combined into one string.

Each taint-aware method call performs two operations: calling the

equivalent method on the wrapped string-like object, and ensur-

ing metadata is propagated appropriately. For example, Figure 4

shows a simplified example of the concat method. By essentially

proxying method calls, we can enable taint tracking while bene-

fiting from extensive performance optimizations of the JVM. For

example, the HotSpot JVM will replace commonly executed string

concatenations with a native implementation. We also support taint

propagation for reflected method calls by proxying e.g., the invoke
method and performing conversion to taint-aware types at runtime.

In addition to class replacement, Fontus also implements applica-

tion specific sources and sinks for the introduction and checking of

metadata via insertion of hook functions at bytecode level.

One challenge of this approach is that the Java standard library

classes are loaded before Fontus itself, and therefore cannot be

modified to accept our taint aware strings. Instead, we unwrap all

taint aware classes when passing them to standard library functions.

In order to prevent loss of taint metadata during calls to standard

library methods, we proxy these calls to ensure taint information is

correctly propagated. For example, the StringJoiner class allows

easy creation of a string containing a list of values separated by

a delimiter. To correctly propagate the taint, we redirect these

calls to a Fontus runtime class which computes the taint and calls

StringJoiner internally.

6.2 Taint Persistence

Most tainting engines only track taints of values residing in the

application’s heap memory. While this approach may be sufficient

for security purposes, it is insufficient for data protection enforce-

ment. Take for example an online shop which stores a customer’s

e-mail address when an order is placed. If the company decides

at some point in the future to use stored e-mail addresses to send

advertisements, this can constitute a GDPR violation. If taint infor-

mation were removed upon entering the database, detecting such a

violation would be impossible. Therefore, our taint engine persists

taint information in the database. This allows us to enforce pri-

vacy properties across multiple sessions or even between multiple

applications sharing the same data source.

Enabling taint persistence has two requirements: preprocessing,

which is performed offline prior to starting the application, and

query rewriting at runtime.

6.2.1 Preprocessing. The preprocessing step modifies the database

schema to make it taint aware. Here we modify the structure of

every database table to allow storing the taints next to the actual

values. For each column in a database table, the preprocessor adds a

second column to store taint information. These newly introduced

taint columns are denoted with the t subscript. As this process

simply adds additional columns, this representation is fully database

agnostic.

6.2.2 Query Rewriting. In addition to creating the taint columns, all

queries interacting with the database have to be made taint aware

as well. Fontus thus includes a Java Database Connectivity (JDBC)

driver which acts as a wrapper for the JDBC driver actually used

by the application. Our driver dynamically rewrites all incoming

SQL statements and passes them on to the wrapped driver.

The query rewriting works as follows: The columns affected by

an SQL query are separated into three different categories. The

result set, that is the columns returned by e.g., a SELECT statement.

The update set, which are the values written by UPDATE or INSERT
statements and the condition set, that is the values occurring inside

e.g., WHERE clauses. For example:

SELECT a, b, d from t WHERE id = ?;

UPDATE a = ? in t WHERE id = ?;

result set condition set

update set condition set

For all elements in both the result as well as the update set their

corresponding taint values need to be considered as well. The taint

value of the elements in the condition set are not considered. Thus

both queries are transformed as follows:

SELECT a, 𝑎𝑡 , b, 𝑏𝑡 , d, 𝑑𝑡 from t WHERE id = ?;

UPDATE a = ?, 𝑎𝑡 = ? in t WHERE id = ?;

result set condition set

update set condition set

Special consideration has to be taken when nested queries are

involved. For example, consider the following query:

SELECT d, (SELECT COUNT(id) FROM t) AS e FROM t;

Here the simple transformation shown before does not work, as a

nested SELECT query can only return a single column. Thus, the

nested query has to be duplicated as a whole. This results in the

following query:

SELECT d, 𝑑𝑡 , (SELECT COUNT(id) FROM t) AS e, (SELECT '0' from t

LIMIT 1) as 𝑒𝑡 FROM t;↩→

Untainted values are denoted as ’0’while tainted values contain
the serialized taint object as a JSON string.

The taint persistence has to be fully transparent for the applica-

tion. For example, index based access to parameters and resulting

values is common in the JDBC API. Thus, our taint driver has to

adjust the indices of both query parameters and result set return

values to keep the developer’s intention intact. Additionally, all

operations requesting information about the database schema have

to return a view without the taint columns to not break code that

has assumptions about e.g., a table’s column order.

When setting a parameter’s value the driver transparently sets

the taint column to the serialized taint information and restores it

upon read access.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark David Klein, Benny Rolle, Thomas Barber, Manuel Karl, and Martin Johns

1 long signUp(String name, String email) {
2 name = THandler.taint(this, name); // Fontus
3 email = THandler.taint(this, email); // Fontus
4 return UserDao.storeUser(name, email);
5 }

(a) Metadata Introduction

1 for(User user : getUsers()) {
2 String name = user.getName();
3 String header = String.format("Hi %s!", name);
4 String mail = user.getEmail();
5 THandler.check(NEWSL, header, mail); // Fontus
6 this.sendNewsletter(header, mail);
7 }

(b) Policy Enforcement

Figure 5: Enforcing Purpose Limitation

This approach is both database agnostic as well as agnostic to

frameworks for database interaction. For example, all applications

used to showcase the feasibility of our framework use object re-

lational managers such as Hibernate. As long as they use a JDBC

driver for the underlying communication with the database, our

framework can make the database interaction taint aware.

6.3 GDPR Tainting for Real Applications

Enabling taint tracking with Fontus for any Java application

requires addition of the javaagent flag to its invocation, loading
the taint engine itself, and adjusting the database setup to enable

taint persistence. The latter requires preprocessing of the database

schema and modification of all JDBC connection strings to use

our driver. To enforce data protection properties three additional

configuration steps are required:

Determine sources. Identify the operations where data enters

the application. Typical instances of sources are reading HTTP

request parameters or its body values. Additionally, operations

where processing takes place that alters the privacy metadata shall

be declared as sources too.

Define sinks. Identify operations where data leaves the appli-

cation or processing with a specific purpose takes place. These

sinks require a list of required purposes, the corresponding vendors

performing the data processing, the allowed protection level of

incoming data as well as a mitigation policy in case of a violation.

Taint Handler. While defining sources and sinks is sufficient for

ensuring security properties, the taint metadata shown in Figure 3

requires dynamic information, e.g., to determine the actual data

subject. Usually this is the user currently logged into the application,

but there are more complex scenarios, too. For example, at the

registration desk of a hospital a clerk enters data on behalf of the

user. Thus, the data subject is not the logged-in user, i.e., the clerk,

but the person seeking medical help. Retrieving these information

is highly application specific and thus requires custom logic.

Therefore, sources are annotated with a so called Taint Handler
responsible for retrieving this information and computing the cor-

rect GDPR taint value. When tainted data reaches a sink, Fontus

executes its default GDPR policy which first removes all data where

the processing restricted flag is set by replacing it with placeholder

values and then validates that the purpose and vendor pairs required

Table 3: Evaluation Applications

LoC
†

Handler Size

Name Ver. Total Java Classes
‡

LoC
†

Effort

OpenOlat 16.1a 1.4M 1.1M 22k 125 -

Broadleaf 6.1.7 353k 201k 18k 189 -

OpenMRS 2.13 236k 127k 40k 285 -

OpenHospital 1.12.0 255k 59k 22k 167 5 h

JForum2 2.8.2 67k 35k 10k 71 3 h

CAP Bookstore 1.0.0 147k 12k 16k 82 7 h

HMSA-CTT 0.0.1 9k 4k 20k 129 6 h

(†) Lines of code measured by cloc (https://github.com/AlDanial/cloc).

(‡) Total number of loaded classes after running our tests.

for the sink are allowed based on the taint data. If a violation is de-

tected, the default policy triggers the mitigation policies of the sink

one after another. In case the default GDPR policy is insufficient to

handle the violation, e.g., due to the application expecting a specific

exception, it is also possible to insert a call back to the handler

here as well. This allows implementing application or sink specific

mitigation approaches. When detecting a source or sink invoca-

tion in the bytecode, Fontus automatically injects calls to the Taint

Handler and GDPR policy functions based on the configuration.

6.4 Full Example

A complete example on how Fontus enforces purpose limitation is

provided in Figure 5. The lines with a comment at the end are those

transparently inserted into the bytecode by Fontus. It first shows

the sign-up process of a web application in Figure 5a. The signUp
method is declared as a source, thus our framework inserts the

TaintHandler calls on line 2 and 3. Here the framework retrieves the

taint metadata from the configuration, environment and the current

application state. On line 4 the newly entered data is stored in the

database along with its taint metadata. The functionality shown

in Figure 5b represents sending a newsletter to all users. On line 1

all users are retrieved from the database. As they have attributes

constituting personal data, the corresponding taint metadata is

restored as well. Then, on line 3 the tainted value name is combined

with static data to form a string tainted such as shown earlier in

Figure 3. In line 6 the application attempts to send the newsletter

to the currently selected user. The sendNewsletter function is

declared as a sink, thus Fontus inserts a call to the TaintHandler on

line 5 to check whether the operation is permitted. Here the intent

label 𝑁 of the sink is checked against the metadata attached to

this user’s data. The sink’s label is retrieved via its ID (here NEWSL)
based on the provided configuration. If this check determines that

processing is not permitted, the runtime can prevent the operation

and consequently prevent a data protection infringement.

7 PRACTICAL EVALUATION

To demonstrate the feasibility of our approach, we configured, in-

strumented and deployed 7 open source Java applications using our

compliance framework. We chose large open source applications

with real world personal data usage to evaluate the applicability of

Fontus to realistic data protection scenarios.

https://github.com/AlDanial/cloc

Enforcing Transparent GDPR Compliance for Existing Applications CCS ’23, November 26–30, 2023, Copenhagen, Denmark

7.1 Selected Applications

The 7 selected applications are listed in Table 3 and described in

more detail in the following.

OpenOlat [16] is an e-learning platform, used in both educa-

tional and commercial institutions. It can manage courses, exams,

how users progress throughout their curriculum and offers collab-

orative features such as instant messaging and message boards.

Additionally, it provides interfaces to a wide array of external tools

such as Microsoft Teams or PayPal. It handles data with a broad

spectrum of sensitivities, from less sensitive, e.g., instant messages

between colleagues in a course, to highly sensitive, e.g., grades or

information about disabilities.

Broadleaf [5] is an e-commerce solution, used for example by the

Major League Baseball (MLB) organization to handle millions of sub-

scriptions for the MLB’s online services [6]. A noteworthy aspect of

Broadleaf is its microservice based architecture. That is, it consists

of several independent services sharing a central database. The

services deployed throughout our testing are the customer facing

website, an administrative website used to handle e.g., customer ser-

vice requests and a service providing an application programming

interface (API) for usage by external partners. Propagating taint

information from e.g., the website upon purchasing an item toward

the API requires our taint engine to persist the taint information in

the central database.

OpenMRS [8] is a medical record system designed to handle the

information technology requirements of hospitals. It is deployed in

over 40 countries and handles the data of almost 15million patients.

It is designed to process patient information, including sensitive

data such as medical condidtions and allergies. In contrast to the

other use-cases, the actual data subjects (i.e., the patients), do not

interact with the application themselves. Instead, only employees

of the hospital and its partners directly interact with the web appli-

cation. Our framework thus has to be able to handle such delegated

forms of data entry.

OpenHospital [21] is a second medical record system. Unlike

OpenMRS, its frontend is not build on Java technologies. Instead, it

provides a REST API with a JavaScript web UI interacting with the

backend.

JForum2 [22] is a web forum application, used to build and main-

tain a community. It stores personal information such as IP and

e-mail addresses for moderation and notification purposes.

CAP Bookstore [39] demonstrates how to build business applica-

tions using the Cloud Application Programming Model framework

with a book shopweb application as an example. Users can purchase

books and leave reviews, managed by a separate admin interface.

Similar to OpenHospital, it provides its functionality via a REST

API and a JavaScript frontend. Unlike the other applications, the

CAP Bookstore uses an in-memory H2 database, which does not

allow external database queries.

HMSA-CTT [48] Is an open source contact tracing solution devel-

oped by a German university of applied sciences. When attending

a lecture each student has to check in on the HMSA-CTT website

for the current room. In case of an infection, administrative staff

can then generate a report of all users which were checked into the

same rooms as the infected user.

Table 4: Mapping Software Requirements to Use Cases

U
s
e
C
a
s
e

P
u
r
p
o
s
e
L
i
m
i
t
a
t
i
o
n

R
e
c
i
p
i
e
n
t
s

S
t
o
r
a
g
e
P
e
r
i
o
d

P
r
o
t
e
c
t
i
o
n
L
e
v
e
l

R
i
g
h
t
o
f
A
c
c
e
s
s

C
o
n
t
e
x
t

R
e
c
t
i
f
i
c
a
t
i
o
n

E
r
a
s
u
r
e

R
e
s
t
r
i
c
t
i
o
n

A
c
t
u
a
l
R
e
c
i
p
i
e
n
t
s

D
a
t
a
P
o
r
t
a
b
i
l
i
t
y

O
b
j
e
c
t
i
o
n

UC1

UC2

UC3

UC4

UC5

UC6

UC7

UC8

UC9

UC10

UC11

UC12

7.2 Use Cases

For each application, we constructed one or two representative use

cases to evaluate our methodology, with a further two generic use

cases which are applicable to all applications. As shown in Table 4,

the use cases have been chosen to allow evaluation of all GDPR

requirements presented in Section 3.

UC1: OpenOlat – Contact Tracing

To combat the COVID-19 pandemic, OpenOlat includes contact

tracing functionality, allowing users to check in when physically

attending courses. In cases of a COVID infection, an administrator

can generate reports to warn other attendees. These data are sensi-

tive, as they can be used to track the movement of users and infer

personal details about them. Thus, they should not be used for any

purposes other than “contact tracing”. Additionally, they should be

deleted as soon as they are no longer required. These requirements

should be automatically enforced by our approach. Note that this

use-case equally applies to the HMSA-CTT application.

UC2: OpenOlat – Contesting Incorrect Data

In the default configuration OpenOlat does not allow users to

change either first or last name. If the stored name becomes in-

accurate, for example due to marriage, the user has to contact the

system operator to rectify this mismatch. Under Art. 16, a data

subject has the right to demand rectification of inaccurate data. For

example, a wrong surname could be contested by the data subject

and must not be used for further processing. Our framework shall

ensure that contested data is not used for further processing until

it has been corrected.

UC3: Broadleaf – Restricting 3rd Party Data Processing

Broadleaf offers a REST API connected to the store’s database,

allowing external tools to interact with the data in an automated

fashion. An example for such an endpoint is the option to query

customer profiles. In this way, it is possible to provide access to

third-party providers who want to process the customer data, for

example, for marketing purposes. This data includes, among others,

the full name and saved addresses. To process customer data in a

GDPR-compliant manner, a third party requires a legal bases, such

as the customer’s consent. Thus, a user has to consent to the “data

CCS ’23, November 26–30, 2023, Copenhagen, Denmark David Klein, Benny Rolle, Thomas Barber, Manuel Karl, and Martin Johns

processing” purpose for the vendor “ACME” such that their data

can be accessed and processed by said third party.

UC4: Broadleaf – Document 3rd Party Data Processing

According to Art. 19, the data controller shall communicate the

rectification, erasure or the restriction of processing of personal

data to any recipient to whom this information has been disclosed.

Thus, for all personal data collected in UC3, it should be recorded

when and to which 3rd party they were sent in order to be able to

forward potential corrections or restrictions at a later stage.

UC5: OpenMRS – User Access to Sensitive Medical Data

OpenMRS stores and processes sensitive medical information of pa-

tients such as medical diagnoses and conditions. These data should

only be visible to OpenMRS users with a need to view them, such

as doctors and nurses, and remain hidden to other users, such as

IT administration staff. Therefore a patient must consent to a “data

processing” purpose for a number of recipients “doctor”, “nurse”,

“clerk” etc. for their data to be visible.

UC6: OpenMRS – External Data Processing

OpenMRS allows patient data to be exported to other locations and

external systems via the Fast Healthcare Interoperability Resources

(FHIR) interface [15]. FHIR uses a RESTful protocol to allow inter-

operability between health care systems and provide information

across a wide variety of devices. As FHIR shares data with third-

parties, patients should explicitly give their consent for an “export”

purpose before their data are transmitted via FHIR.

UC7: OpenHospital – User Access to Sensitive Medical Data

Similar to UC5, the OpenHospital application processes sensitive

medical information, these data should only be visible to appropri-

ate users.

UC8: JForum2 – Restrict Automated E-mail Notifications

JForum2 notifies users about replies to their posts via e-mail by de-

fault. While users have the possibility to disable these notifications

via their profile, forum administrators can override this preference

freely. By defining a purpose “e-mail notifications”, users shall have

full control over whether they receive notifications, regardless of

administrative staff editing their preferences.

UC9: CAP Bookstore – Avoid Exposing Contact Information

The CAP Bookstore application allows users to leave book reviews

and ratings. These ratings are public by default, and expose sen-

sitive user contact information such as e-mail addresses. Users

must therefore explicitly consent to a “review” purpose before their

contact information can be viewed by other users.

UC10: HMSA-CTT – Encryption of Contact Information

As HMSA-CTT handles contact information related to medical

infections, it could be considered sensitive data under GDPR. Any

contact information should require a “contact tracing” purpose and

stored in an encrypted form to meet Req. 4, Protection Level.

UC11: Generic – Subject Access Request

As postulated in Art. 15, data subjects have the right to request

information about whether a data controller processes personal

information concerning her and if so gain access to it. This is called

a subject access request (SAR).
UC12: Generic – Records of Processing Activities According

to Art. 30, each data controller has to maintain a record on the

specifics of the application’s data processing. This record has to

include, for example, a list of other parties data is shared with, cat-

egories of stored data, or the expected timeframe for data deletion.

7.3 Evaluation: Enforcement

In this section we describe how Fontus was used to successfully

implement the use cases described above. For each application we

implemented the required taint handler code to correctly initialize

the metadata according to the use cases and configured correspond-

ing sources and sinks. The total amount of custom code in Fontus

to support these use cases is listed in Table 3.

In addition, each user-facing application was placed behind an

nginx reverse proxy which automatically injects the consent dialog

and cookie as described in Section 5.2. Note that we did not change

the source code of the stated applications.

OpenOlat. To realize UC1 and UC2, we labeled all data retrieved

from HTTP requests as sources. Special care was needed for form

data from POST requests, which OpenOlat reads as Java streams.

In this case we marked the stream to string conversion functions as

sources. For sinks, we identified the getter function of user classes

as well as the getters of classes containing the user’s attributes.

Fontus was correctly able to mark the contact tracing informa-

tion with a high protection level and an expiry date of four weeks

into the future. By querying metadata in the OpenOlat database

with a custom utility tool (called dbquery and part of Fontus), we

were able to successfully extract and delete contact tracing data for

which processing was no longer allowed. This automated deletion

enforces compliance with Req. 3. We were also able to implement

and successfully test this use-case for the HMSA-CTT application.

Additionally, dbquery allows setting the restricted flag (𝑟) for

specific database entries in order to fulfill UC2. In this scenario, a

user contacts the data controller to inform them of incorrect data

(e.g., a name change). The data controller then uses dbquery to set

the restricted flag 𝑟 = 1 for the incorrect database entries associated

with that user. We can therefore successfully prevent processing

of contested data as Fontus checks the restricted flag at every sink.

This enables automated fulfillment of Req. 9 and Req. 12. If the

check fails we replace the contested value with a placeholder to

avoid interfering with the execution of the application.

Broadleaf. The REST API of Broadleaf has no inherent restric-

tions on what data can be queried, such that a third party with

access to the API has visibility over the entire customer database.

In other words, all customers would have to give consent to data

sharing in order for the REST API to be used in a compliant fashion.

To demonstrate Fontus can restrict API access to customers who

have not given their consent (UC3), we first identified HTTP request

parameters as source functions, with API calls to the database us-

ing so-called Database Access Objects as sinks. If an API query tries

to access data from a customer who had not given their consent,

the taint handler replaces the original API response with null to
mimic an empty result. Note that in this case simply throwing an

exception would result in an HTTP error which would still leak in-

formation (i.e., her existence) about the user. We also demonstrated

that Fontus can be used to minimize sharing of unnecessary data

by only allowing a subset of customer data to be shared: for exam-

ple, if a third party performs marketing solely via e-mail, we can

block access to the user’s postal address. We therefore successfully

demonstrate Req. 1 and Req. 2.

Enforcing Transparent GDPR Compliance for Existing Applications CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Additionally, we were able to demonstrate UC4 by adding the

methods of the API itself as sinks. In this case we implemented

a taint handler which logs information on the sink configuration

and the unique ID (𝑖) of the data. In this way Fontus keeps track

of all personal data (including the associated data subject) shared

with third parties. This allows the data controller to easily identify

the third parties data has been shared with (fulfilling Req. 10) and

forward all rectifications, erasures or restrictions of processing.

OpenMRS. OpenMRS already has a detailed user management

and access control framework in place to restrict the visibility of

sensitive data. We confirmed this by checking that a user with the

System Administrator role was not allowed to view patient infor-

mation via the standard web application. However, we discovered

a legacy user-interface in OpenMRS where access policies are not

correctly enforced and allow unprivileged users to view patient

information including their medical conditions. In addition, we

confirmed that third parties with access to the FHIR API also have

full access to all patient data.

To realize UC5 and UC6, we identified two groups of sources,

namely functions retrieving parameters from HTTP requests and

HTML form entries. Similarly to OpenOlat, the form entries are

read through a wrapper class, and as such we selected methods

extracting string values from the wrapper as sources. As sinks, we

identified the getter of the patient, diagnosis and allergen model

classes as these are used for both display and search functionality

(UC5). To provide restrictions on whose data is included in FHIR

responses, we marked the functions setting properties of the report

objects as sinks too.

We showed that Fontus can protect sensitive patient data in

spite of application bugs or misconfiguration as follows. When

registering a new patient, a dialog is presented asking the patient

to provide their consent for sharing their data with the users of the

FHIR API as well as the purpose data-processing, with recipients

corresponding to roles (e.g., clerk, doctor, IT staff) of the OpenMRS

application. When the data are subsequently retrieved at a later

point, Fontus checks whether the patient has given their consent for

the currently logged-in user to process their data. If consent has not

been given, the patient information is automatically redacted and

replaced by a placeholder.We therefore confirmed that using Fontus

indeed prevents leaking patient information even in the presence of

the bug mentioned above (UC5). Additionally, we could show that

Fontus can successfully block calls to the FHIR API for patients

who have not given their consent (UC6). We therefore successfully

demonstrate Req. 1, Req. 2 and Req. 4.

OpenHospital. Similar to OpenMRS, any data related to the pa-

tient (via POST to the patients API) was tainted with the patient’s

consent preferences of who was allowed to access their data. If no

consent had been given for a user to view patient data, we con-

firmed that patient information was no longer visible to that user

(UC7), fulfilling Req. 1 and Req. 2.

JForum2. To realize the JForum2 specific use case, we identified

data read from HTTP requests as sources. This encompasses query

parameters, the user’s IP address as well as the request body. UC8 is
concerned with sending e-mails, thus it was necessary to identify

both where e-mails are sent and how a user’s e-mail address is

read. While the e-mail address is used for several reasons, such as

determining whether a user is banned. The combination of both

functions allows to prevent sending notifications (fullfilling Req. 1)

without violating invariants and break the application.

CAP Bookstore. To prevent exposure of a user’s contact informa-

tion without their constent, we instrumented all methods retrieving

e-mail addresses as sources. Sink functions were identified as JSON

serialization functions for REST API responses. We were able to

show that Req. 1 and Req. 2 were fulfilled by confirming that e-mail

addresses were only made public if the user had given their explicit

consent (UC9).

HMSA-CTT. We identified all HTTP request parameters related

to personal data (e.g., name, e-mail, address) as sources and marked

them as sensitive with an expiry date of two weeks. To realize

UC10, we ensured that all sensitive data written to the database

was encrypted (Req. 4), and subsequently decrypted on retrieval.

Note that although HMSA-CTT can encrypt contact information

natively, we are able to guarantee this protection even if the feature

is disabled.

Generic use cases spanning all three applications. Finally, we re-
port on our experiments concerning the generic use-cases, where

we rely on general, application-agnostic functionality provided by

Fontus. These final use cases demonstrate fulfillment of a number

of requirements as shown in Table 4.

To successfully comply with a subject access request (UC11), all
personal data concerning a specific user has to be retrieved. In non-

trivial applications, this data is distributed across a multitude of

database tables and columns. Thus, extracting the data to conduct

such a subject access request is an elaborate task if no automation is

in place. Fontus can assist in performing subject access requests as

all personal data stored in the database will be annotated with meta-

data which contains information about the associated data subject.

Thus, data belonging to a user can be trivially queried and made

available to the requesting person. For all selected applications bar

CAP Bookstore, we were able to create subject access request proce-

dures with the aforementioned dbquery utility, which successfully

retrieved all stored information for a given user. Creating these did

not require any knowledge about the actual application logic or the

intricacies of the database layout.

In respect to the required record of data processing activities

(UC12), key parts (Art. 30(1)(b), (c) and (d)) can be retrieved directly

from the Fontus configuration. For instance, while Fontus is active,

it is impossible to share data with external parties that are not

explicitly enabled in the configuration. This has two distinctive

advantages: For one, the creation of the record can be partly auto-

mated. Furthermore, it is guaranteed that the record represents the

actual behavior of the application. In this way the provided record

and the application’s actual processing practices are guaranteed to

remain synchronized and correct.

7.4 Evaluation: Robustness

We also performed a number of measurements designed to evaluate

the robustness and completeness of our approach. For each applica-

tion we wrote end-to-end tests designed to maximize exploration of

the target application, whilst incorporating the use-cases described

CCS ’23, November 26–30, 2023, Copenhagen, Denmark David Klein, Benny Rolle, Thomas Barber, Manuel Karl, and Martin Johns

Table 5: Robustness test summary

Application Tainting Coverage Code Coverage
†

DB Size (kB)
‡

SQL Queries SQL Tokens

Name Source Sink Tainted Class Method Line Startup Test Total Unique Original Rewritten

OpenOlat 75.0% 75.0% 23.3% 63.6% 37.4% 31.4% 11728 12224 8713 654 178.60 321.95

Broadleaf 100.0% 100.0% 40.0% 60.5% 31.6% 28.4% 8048 115408 193362 442 71.77 125.80

OpenMRS 100.0% 86.0% 38.2% 68.9% 33.2% 27.6% 18032 18224 119539 506 173.06 316.01

OpenHospital 100.0% 100.0% 1.0% 78.7% 55.7% 42.5% 1785 2153 450 54 126.19 210.48

JForum2 100.0% 100.0% 47.5% 78.5% 75.2% 66.1% 1472 1984 6281 239 24.83 37.98

CAP Bookstore 100.0% 100.0% 2.0% 100.0% 76.9% 73.9% - - 1329 579 60.26 92.10

HMSA-CTT 75.0% 100.0% 13.0% 71.4% 54.1% 60.9% 192 224 116 18 41.28 63.83

†: Measured using Jacoco (https://www.eclemma.org/jacoco/), ‡: Computed by summing data and index size for all tables in the database.

above, resulting in a total of 229 test cases. These tests were per-

formed from the perspective of a web user and executed using the

Playwright browser automation framework [33]. For each appli-

cation we ran the corresponding tests and measured the metrics

described below and summarized in Table 5.

7.4.1 Test Coverage. To ensure that our tests are an effective way

of evaluating the use cases in Section 7.2, we report the percentage

of source and sink functions triggered at least once during test

execution (Source and Sink columns in Table 5). For all applications,

almost all sources are triggered, and either all or a high percent-

age of sinks are executed. This shows that Fontus is successfully

introducing and checking for tainted data at application runtime.

We also report the percentage of sink executions with tainted data

entering the sink (Tainted column in Table 5). For example, Open-

Hospital sinks check whether data entering the HTTP response

body are tainted. As the response is in JSON format, we would

expect a mix of untainted (e.g., for field names) and tainted (for

values containing personal data) events. We indeed confirm that

both tainted and untainted data are detected by Fontus for each

application. The large variation in the tainted fraction is due to the

nature of the application and how efficient the test cases are in trig-

gering sinks with tainted inputs. We also report the code coverage

of classes in the application’s name space recorded after testing to

highlight that our tests sufficiently explore the target applications.

On average our tests executed code in 75% of application classes.

7.4.2 SQL Rewriting. In order to evaluate the effectiveness of SQL

rewriting we measured the total amount of data written to the SQL

database after application startup and after test execution. For the

CAP Bookstore application, database size measurements were not

possible due to the deployment of an embedded in-memory H2

database. In all cases we observe an increase in size, confirming

the Fontus successfully writes database entries. The numbers also

confirm the scalability of our rewriting engine, which successfully

processed queries for databases ranging in size from a few hundred

kB up to 107 Mb. In one case (Broadleaf), the engine was able to

process queries for over 100 Mb of data during test execution.

In addition, we measured the total number of SQL queries ex-

ecuted by each application, together with the number of unique

queries rewritten by our engine. The results in Table 5 show that our

SQL rewriting technique is not only able to successfully handle a

large volume of queries, but also a large variety of different queries.

The complexity of SQL queries was further assessed by counting

the number of SQL tokens present in each query. For example, the

simple query SELECT * from table; has a token count of 5. For each

application we measured the average number of tokens before and

after our rewriting. The results show that our engine is capable of

handling complex queries with many hundreds of SQL tokens.

7.5 Evaluation: Performance

Table 6 summarizes the performance overhead of Fontus. All ap-

plications ran on OpenJDK 11’s HotSpot JVM and, together with

their respective databases, were hosted in Docker containers on a

machine with an AMD EPYC 7702P 64 core CPU and 512GB RAM.

For the three largest applications we picked a sequence of typical

interactions (described in the supplemental) and executed them, for

multiple concurrent users, in a loop, measuring the average HTTP

response time. All testing was done headless with the Gatling per-

formance testing framework [17], meaning that no client side ren-

dering is included in the numbers. Each measurement was divided

into two phases. First, the warmup phase where the sequence is

ran for one minute with one user to ensure the JVM has loaded all

required classes and optimized their code. Then, in the measure-

ment phase several concurrent users perform their actions in a loop

for three minutes. The reported numbers are from the latter phase,

emulating the typical state of a web service taking user requests.

For OpenMRS, the application itself (without Fontus instrumen-

tation) became unstable and was prone to crashes for more than

50 users. Therefore, we have only reported numbers for up to 50

concurrent users. We also computed the storage overhead (Column

‘S’ in Table 6) for the deployment of OpenMRS with Fontus.

Table 6: Runtime Overhead induced by Fontus

U OpenOlat Broadleaf OpenMRS

R T O R T O R T O S

1 10

±12
16

±15
6

60.0%

43

±62
57

±62
14

32.6%

121

±157
175

±220
54

44.6%

3.5%

10 10

±13
16

±16
6

60.0%

43

±65
59

±70
16

37.2%

117

±168
160

±223
43

36.8%

42.8%

25 11

±16
18

±20
7

63.6%

48

±65
69

±79
21

43.8%

121

±184
152

±219
31

25.6%

59.4%

50 16

±23
22

±24
6

37.5%

61

±80
93

±137
32

52.5%

119

±185
144

±200
25

21.0%

49.6%

75 21

±27
27

±32
6

28.6%

67

±90
125

±216
58

86.6%

- - - -

100 26

±32
34

±33
8

30.8%

79

±80
138

±222
57

72.2%

- - - -

Legend: Users, Regular, Tainted, Overhead, Storage overhead.

All timing measurements are provided in milli seconds.

https://www.eclemma.org/jacoco/

Enforcing Transparent GDPR Compliance for Existing Applications CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Our results show that Fontus has excellent potential as a prac-

tical solution for runtime data protection enforcement. In each

application, the overhead caused by our framework is within the

standard deviation of the untainted measurement. Although a direct

comparison is not possible, (due to, e.g., differences in supported fea-

tures, metadata structure and Java versions), our results are broadly

comparable with previous works using bytecode rewriting to im-

plement dynamic taint tracking for Java. For example, Martin et al.

[28] measure an average overhead of 57.4% for five web applica-

tions, while Bell and Kaiser [3] obtain an average overhead of 53.3%

across two Java benchmarking suites. A more detailed discussion of

the overhead caused by different parts of Fontus can be found in the

supplemental document. Although achieving overheads for deploy-

ment in a production environment was not the focus of this paper,

we believe that further performance improvements are possible by

implementing additional features such as optimized caching of SQL

transformations or selective instrumentation via static analysis.

8 DISCUSSION

Our experiments have shown that Fontus can enhance an applica-

tion to provide data protection guarantees without any changes

to the application logic or source code. Thus, we have demon-

strated that our solution can indeed aid data controllers in fulfilling

their legal responsibilities under the GDPR, such as “to integrate

the necessary safeguards into the processing in order to meet the

requirements of this Regulation and protect the rights of data sub-

jects” (Art. 25(1)). Additionally, the storage of the concerned data

subject together with each piece of data allows a data controller to

greatly simply mandated processes such as the record of process-

ing activities or, in case of a data breach, to pinpoint affected data

subjects.

To configure Fontus for the chosen applications, it was necessary

to create a certain amount of application specific code, for exam-

ple to realize the mitigation policies for the respective application.

However, as shown in the “Handler” column of Table 3, the amount

of custom code required is reasonably small, especially when com-

pared to the effort which would be required to implement the same

data protection features by hand. Additionally, the taint handler

code already contains basic routines required to realize most use

cases, such as determining the current user. Fontus loads the han-

dler code directly by itself, so no modifications of any application’s

source code were necessary. This property of Fontus is significant,

as it enables us to prevent data protection violations even in the

presence of binary only dependencies. Identifying both sources and

sinks was possible without prior knowledge or deep understanding

of the three deployed applications or their database layouts.

For obvious reasons, our enforcement technique is only as strong

as the provided configuration. If the data controller neglects certain

sources or sinks, Fontus will not inspect the data flowing through

them and will not enforce data protection checks. Therefore, cor-

rect configuration of Fontus is essential for robust enforcement.

Fortunately, we observed a large overlap in sources for all three ap-

plications. For instance, retrieving HTTP request parameter values

is part of the servlet API which builds the foundation for the vast

majority of Java web frameworks. Only HTML form parameters

were handled differently by each application, but as they all require

access to a Servlet object, were trivial to locate. Identifying sinks

is more involved as they are dependent on the application archi-

tecture. However, this task can be performed relatively easily by

identifying places where data leaves the application, such as being

read for displaying purposes or module boundaries to identify dif-

ferent processing purposes. Data leaving the application is usually

realized via frameworks, e.g., in the form of APIs or the rendering

framework and typically have clearly identifiable signatures and

annotations. In our experiments, less than ten sinks were needed

per application to realize the all of the use cases presented.

Limitations and Future Work Opportunities. The taint engine cur-
rently only supports tainting string-like data types. For privacy

protection, this limits the amount of data correctly associated to its

data subject. For example, Date objects are not tainted by Fontus,

but could be used to store dates of birth. Enhancing the under-

lying taint engine to support tainting additional data types via,

e.g., shadow variables, similar to the taint persistence approach

described in Section 6.2, without sacrificing too much performance

is an interesting challenge.

The presented taint persistence approach relies on parsing SQL

queries before handing them to the database driver. Object-relational

mapping frameworks are commonly used by large Java applications

and dynamically generate SQL Queries by inspecting Java objects.

Integrating Fontus with such a framework would avoid costly post-

processing as the shadow columns could be directly generated with

the query.

In addition, as mentioned earlier, identifying adequate sinks is

highly application specific. However, a first step to simplify the

configuration process would be to identify common functionality

in the JDK that typically transmits data. Fontus already includes

sources for reading HTTP request parameters as well as writing to

OutputStreams to prevent injection attacks. This default configura-

tion could be extended by a throughout analysis of the Java (EE)

standard library to identify common sinks.

9 RELATEDWORK

We divide the related work into four areas: dynamic information

flow control, taint tracking, GDPR’s impact on data processing and

attempts to detect mishandling of personal data.

Dynamic Information Flow Control. Dynamic policy enforcement,

usually in the form of information flow control (IFC), is an active

field of research, with a wide variety of proposed approaches.

Quapla [31] adds an enforcement engine onto the storage layer by

intercepting database queries and rewriting them to add additional

restrictions based on provided policies. Such a permission model

on the database layer can prevent data leakages but can not pre-

vent policy violations on the application layer. LEGALEASE [41]

is a full-stack policy enforcement system. It attaches policies to

certain attributes, e.g., to prevent their usage for certain purposes.

While such policies can prevent some misuses, they are too coarsely

grained to support the cases which Fontus enforces. Whether an

attribute can be used for a given purpose often varies between

users, so a global policy is insufficient.

Resin [54], a PHP runtime preventing security issues via appli-

cation specific data-flow assertions. It relies on a modified PHP

CCS ’23, November 26–30, 2023, Copenhagen, Denmark David Klein, Benny Rolle, Thomas Barber, Manuel Karl, and Martin Johns

runtime and thus is difficult to deploy securely while also requiring

modifications to the application’s source code in order to attach la-

bels. IFC approaches for the JVM either add constraints on used lan-

guage features such as reflection (e.g., Co-Inflow [53] or Aeolus [7])
or also rely on modifications to the runtime such as Laminar [36].

All five of the aforementioned aspects, i.e., encompassing data

that is both in flight and persistent, no changes to the application’s

source code, finely granular policies, no custom runtime as well as

support for dynamic language features, are in our opinion crucial

for a framework that effectively aids GDPR compliance for real

world applications. Therefore, we decided to build Fontus.

Taint Tracking. As a technique to analyze information flows,

tainting has been successfully deployed to detect a wide range of

issues. Both client [e.g., 24, 32] as well as server-side injection vul-

nerabilities [e.g., 19, 20] and privacy leaks [e.g., 12] are among its

more prominent uses. As the JVM is one of the premier enterprise

software environments, different taint-tracking approaches have

been proposed for it. The taint tracking part is implemented in

a multitude of ways, from including it directly into the JVM [45]

over only changing parts of the standard library [18, 19, 26] to byte-

code rewriting [3, 28]. We decided to implement our own bytecode

rewriting approach since Phosphor is too slow for our use case [20]

and the other approaches require changes to either the JVM or the

standard library, and thus do not work with standard off-the-shelf

JVMs. Persisting taint information in databases has been suggested

by Davis and Chen [10], using composite data types not available

in every DBMS, whereas our solution, using shadow columns, is

fully database agnostic.

Lawful Data Processing under the GDPR. The most visible im-

pact of the GDPR are the so-called cookie notices requesting con-

sent for data processing upon visiting a website. Such notices are

consequently well studied, covering aspects of their implementa-

tion and compliance with the legal framework [30, 38] and how

users interact with them [27, 50]. Several externally quantifiable

privacy aspects have been measured in recent years. Among them

the presence of client side tracking techniques and third party inclu-

sions [43, 49], the clear communication of data processing purposes,

manifested in privacy policies [25], as well as the right to data porta-

bility [46]. They all indicate a positive impact of the GDPR. There

are still several issues however, for example, unsolicited marketing

e-mails upon signing up to websites are still commonplace [23].

Also, data controllers frequently seem to struggle with subject ac-

cess requests. Martino et al. [29] have shown that a significant

number of large organizations perform insufficient identity checks

for subject access requests and can be coerced into leaking personal

data. This study was replicated in 2021 showing no improvements

to the employed processes [11].

One issue in making existing applications with existing data com-

pliant is the lack of association between data and the corresponding

data subjects. The approach proposed by Agarwal et al. [1] can in-

fer these relations from existing databases. This can significantly

simplify the onboarding for compliance enforcement mechanisms,

such as the approach presented in this work.

Preventing GDPR Violations. Wang et al. [52] propose a system

that ensures lawful data processing if data and purposes are known

before program execution and the application fits into the very

limited application model they support. Shastri et al. [42] derive a

set of metadata which when attached to stored data can support

the compliance process. They then measure the overhead induced

by querying and updating these metadata items on a database.

While they derive a similar set of metadata compared to ours in

Section 4, we believe it to be sufficiently different. Attempts to

statically detect GDPR violations [14] differ from our approach in

the handling of detected data flows. Unlike static approaches, we

can evaluate the lawfulness of the operation based on each user’s

choices. Additionally, static approaches tend to either over or under

approximate data flows in the presence of dynamic code execution,

a technique heavily used throughout all demonstrator applications.

10 CONCLUSION

In this work, we proposed framing compliance with data protec-

tion laws as an information flow tracking problem. We started by

breaking down the legal regulation into twelve distinct software re-

quirements and showed how they can be automatically fulfilled via

the definition of a specialized metadata structure. By attaching and

propagating this metadata to personal data entering an application,

we designed a non-invasive, transparent enforcement mechanism

that verifies compliance during data processing.

We implemented our idea in the form of Fontus, which performs

taint tracking for the Java Virtual Machine via bytecode rewriting.

We were thus able to retrofit existing applications with data protec-

tion mechanisms without any code changes at the application level,

helping software operators to prevent unintentional data protection

violations without costly manual audits.

We demonstrated the practicality of our approach on 7 large

open-source Java web applications. We showed that Fontus can ro-

bustly enforce data protection policies according to consent prefer-

ences provided by the user (i.e., the data subject) during application

runtime. Hence, Fontus effectively prevents an application from

processing a user’s data against their consent.

ACKNOWLEDGMENTS

Wewould like to thank Jan Niklas Drescher, Louis Bettels and Simon

Kurt Petrik for helping making Fontus more robust.

Technische Universität Braunschweig gratefully acknowledges

funding by the Deutsche Forschungsgemeinschaft (DFG, German

Research Foundation) under Germany’s Excellence Strategy - EXC

2092 CASA - 390781972 and the German Federal Ministry of Edu-

cation and Research (BMBF) under the project IVAN (16KIS1168).

SAP would like to acknowledge support from the German Federal

Ministry for Economic Affairs and Climate Action (BMWK) in the

project Trade-EVs II (01MV20006A). This work has also received

funding from the European Union’s Horizon 2020 research and

innovation programme under project TESTABLE, grant agreement

No 101019206.

Enforcing Transparent GDPR Compliance for Existing Applications CCS ’23, November 26–30, 2023, Copenhagen, Denmark

REFERENCES

[1] Archita Agarwal, Marilyn George, Aaron Jeyaraj, and Malte Schwarzkopf. 2022.

Retrofitting GDPR Compliance onto Legacy Databases. In VLDB Endow.
[2] Art. 29 Data ProtectionWorking Party. 2017. Guidelines on the right to data porta-

bility (wp242rev.01). https://ec.europa.eu/newsroom/article29/items/611233/en.

[3] Jonathan Bell and Gail Kaiser. 2014. Phosphor: Illuminating Dynamic Data

Flow in Commodity JVMs. In ACM International Conference on Object Oriented
Programming Systems Languages & Applications.

[4] Bloomberg. 2021. Amazon Gets Record 888 Million Dollar EU Fine Over Data Vi-

olations. https://www.bloomberg.com/news/articles/2021-07-30/amazon-given-

record-888-million-eu-fine-for-data-privacy-breach. Accessed 08.09.2023.

[5] LLC Broadleaf Commerce. 2022. Broadleaf: Commercial Open Source eCommerce.

https://www.broadleafcommerce.com. Accessed 08.09.2023.

[6] LLC Broadleaf Commerce. 2022. MLB Hits a Home Run with Broadleaf. https:

//www.broadleafcommerce.com/customers/mlb. Accessed 08.09.2023.

[7] Winnie Cheng, Dan R. K. Ports, David Schultz, Victoria Popic, Aaron Blankstein,

James Cowling, Dorothy Curtis, Liuba Shrira, and Barbara Liskov. 2012. Abstrac-

tions for Usable Information Flow Control in Aeolus. In USENIX Conference on
Annual Technical Conference.

[8] OpenMRS Community. 2022. OpenMRS: Medical Record System. https://openmrs.

org. Accessed 08.09.2023.

[9] Council of the European Union and European Parliament. 2016. Regulation (EU)

2016/679 of the European Parliament and of the Council of 27 April 2016 on the

protection of natural persons with regard to the processing of personal data and

on the free movement of such data, and repealing Directive 95/46/EC (General

Data Protection Regulation) (Text with EEA relevance).

[10] Benjamin Davis and Hao Chen. 2010. DBTaint: Cross-Application Information

Flow Tracking via Databases. In USENIX Conference on Web Application Develop-
ment.

[11] Mariano di Martino, Isaac Meers, Peter Quax, Ken Andries, and Wim Lamotte.

2022. Revisiting Identification Issues in GDPR ‘Right Of Access’ Policies: A

Technical and Longitudinal Analysis. In Privacy Enhancing Technologies.
[12] William Enck, Peter Gilbert, Byung Gon Chun, Landon P. Cox, Jaeyeon Jung,

Patrick McDaniel, and Anmol N. Sheth. 2019. TaintDroid: An information-flow

tracking system for realtime privacy monitoring on smartphones. In USENIX
Symposium on Operating Systems Design and Implementation.

[13] J. S. Fenton. 1974. Memoryless subsystems. The Computer Journal 17, 2 (1974).
[14] Pietro Ferrara, Luca Olivieri, and Fausto Spoto. 2018. Tailoring Taint Analysis to

GDPR. In Privacy Technologies and Policy.
[15] FHIR Foundation. 2022. FHIR: Fast Healthcare Interoperability Resources. https:

//www.hl7.org/fhir/. Accessed 08.09.2023.

[16] frentix GmbH. 2022. OpenOlat – Infinite Learning. https://www.openolat.com.

Accessed 21.01.2022.

[17] Gatling Corp. 2022. Gatling. https://gatling.io. Accessed 08.09.2023.

[18] Vivek Haldar, Deepak Chandra, and Michael Franz. 2005. Dynamic Taint Propa-

gation for Java. In Annual Computer Security Applications Conference.
[19] William G. J. Halfond, Alessandro Orso, and Panagiotis Manolios. 2006. Using

Positive Tainting and Syntax-aware Evaluation to Counter SQL Injection Attacks.

In ACM International Symposium on Foundations of Software Engineering.
[20] Katherine Hough, Gebrehiwet Welearegai, Christian Hammer, and Jonathan

Bell. 2020. Revealing Injection Vulnerabilities by Leveraging Existing Tests. In

ACM/IEEE International Conference on Software Engineering.
[21] Informatici senza Frontiere. 2022. Open Hospital: Software EMR HIS open source.

https://www.open-hospital.org/. Accessed 22.04.2023.

[22] JForum Team. 2022. JForum. https://jforum.net/. Accessed 08.09.2023.

[23] Karel Kubíček, Jakob Merane, Carlos Cotrini, Alexander Stremitzer, Stefan Bech-

told, and David Basin. 2022. Checking Websites’ GDPR Consent Compliance for

Marketing Emails. In Privacy Enhancing Technologies.
[24] Sebastian Lekies, Ben Stock, and Martin Johns. 2013. 25 million flows later:

large-scale detection of DOM-based XSS. In ACM Conference on Computer and
Communications Security.

[25] Thomas Linden, Rishabh Khandelwal, Hamza Harkous, and Kassem Fawaz. 2020.

The Privacy Policy Landscape After the GDPR. In Privacy Enhancing Technologies.
[26] Florian D Loch, Martin Johns, Martin Hecker, Martin Mohr, and Gregor Snelt-

ing. 2020. Hybrid Taint Analysis for Java EE. In ACM Symposium on Applied
Computing.

[27] Dominique Machuletz and Rainer Böhme. 2020. Multiple Purposes, Multiple

Problems: A User Study of Consent Dialogs after GDPR. In Privacy Enhancing
Technologies.

[28] Michael Martin, Benjamin Livshits, and Monica Lam. 2006. SecuriFly: Runtime
Protection and Recovery from Web Application Vulnerabilities. Technical Report.
Stanford University.

[29] Mariano Di Martino, Pieter Robyns, Winnie Weyts, Peter Quax, Wim Lamotte,

and Ken Andries. 2019. Personal Information Leakage by Abusing the GDPR

’Right of Access’. In USENIX Security Symposium.

[30] Célestin Matte, Nataliia Bielova, and Cristiana Santos. 2020. Do Cookie Banners

Respect my Choice? : Measuring Legal Compliance of Banners from IAB Europe’s

Transparency and Consent Framework. In IEEE Symposium on Security and
Privacy.

[31] Aastha Mehta, Eslam Elnikety, Katura Harvey, Deepak Garg, and Peter Druschel.

2017. Qapla: Policy compliance for database-backed systems. In USENIX Security
Symposium.

[32] William Melicher, Anupam Das, Mahmood Sharif, Lujo Bauer, and Limin Jia.

2018. Riding out DOMsday: Towards Detecting and Preventing DOM Cross-Site

Scripting. In Network and Distributed System Security Symposium.

[33] Microsoft. 2023. Playwright. https://github.com/microsoft/playwright. Accessed

08.09.2023.

[34] Reuters. 2021. WhatsApp fined a record 225 mln euro by Ireland over pri-

vacy. https://www.reuters.com/technology/irish-data-privacy-watchdog-fines-

whatsapp-225-mln-euros-2021-09-02/. Accessed 08.09.2023.

[35] Reuters. 2022. Google hit with 150 million euro French fine for cookie

breaches. https://www.cnbc.com/2022/01/06/google-hit-with-150-million-euro-

french-fine-for-cookie-breaches.html. Accessed 08.09.2023.

[36] Indrajit Roy, Donald E. Porter, Michael D. Bond, Kathryn S. McKinley, and Em-

mett Witchel. 2009. Laminar: practical fine-grained decentralized information

flow control. In ACM Conference on Programming Language Design and Imple-
mentation.

[37] Marlene Saemann, Daniel Theis, Tobias Urban, andMartin Degeling. 2022. Investi-

gating GDPR Fines in the Light of Data Flows. In Privacy Enhancing Technologies.
[38] Iskander Sanchez-Rola, Matteo Dell’Amico, Platon Kotzias, Davide Balzarotti,

Leyla Bilge, Pierre-Antoine Vervier, and Igor Santos. 2019. Can I Opt Out Yet?

GDPR and the Global Illusion of Cookie Control. In ACM Asia Conference on
Computer and Communications Security.

[39] SAP. 2023. CAP Bookstore. https://github.com/SAP-samples/cloud-cap-samples-

java. Accessed 08.09.2023.

[40] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. 2010. All You

Ever Wanted to Know about Dynamic Taint Analysis and Forward Symbolic

Execution (but Might Have Been Afraid to Ask). In IEEE Symposium on Security
and Privacy.

[41] Shayak Sen, Saikat Guha, Anupam Datta, Sriram K. Rajamani, Janice Y. Tsai,

and Jeannette M. Wing. 2014. Bootstrapping Privacy Compliance in Big Data

Systems. In IEEE Symposium on Security and Privacy.
[42] Supreeth Shastri, Vinay Banakar, Melissa Wasserman, Arun Kumar, and Vijay

Chidambaram. 2020. Understanding and Benchmarking the Impact of GDPR on

Database Systems. In VLDB Endow.
[43] Jannick Kirk Sørensen and Sokol Kosta. 2019. Before and After GDPR: The

Changes in Third Party Presence at Public and Private European Websites. In

International World Wide Web Conference.
[44] Sarah Spiekermann. 2012. The Challenges of Privacy by Design. Commun. ACM.

[45] Bruno Crispo Srijith K. Nair, Patrick N.D. Simpson and Andrew S. Tanenbaum.

2008. IR-CS-045: Trishul: A Policy Enforcement Architecture for Java Virtual Ma-
chines. Technical Report. Vrije Universiteit.

[46] Emmanuel Syrmoudis, Stefan Mager, Sophie Kuebler-Wachendorff, Paul Pizzinini,

Jens Grossklags, and Johann Kranz. 2021. Data Portability between Online

Services: An Empirical Analysis on the Effectiveness of GDPR Art. 20. In Privacy
Enhancing Technologies.

[47] The Spring PetClinic Community. 2022. Spring PetClinic. https://spring-petclinic.

github.io. Accessed 08.09.2023.

[48] University of Applied Sciences Mannheim. 2022. HSMA-CTT. https://github.

com/informatik-mannheim/HSMA-CTT. Accessed 08.09.2023.

[49] Tobias Urban, Dennis Tatang, Martin Degeling, Thorsten Holz, and Norbert

Pohlmann. 2020. Measuring the Impact of the GDPR on Data Sharing in Ad

Networks. In ACM Asia Conference on Computer and Communications Security.
[50] Christine Utz, Martin Degeling, Sascha Fahl, Florian Schaub, and Thorsten Holz.

2019. (Un)informed Consent: Studying GDPR Consent Notices in the Field. In

ACM Conference on Computer and Communications Security.
[51] VMware, Inc. 2022. Spring. https://spring.io. Accessed 08.09.2023.

[52] Lun Wang, Usmann Khan, Joseph P. Near, Qi Pang, Jithendaraa Subramanian,

Neel Somani, Peng Gao, Andrew Low, and Dawn Song. 2022. PrivGuard: Privacy

Regulation Compliance Made Easier. In USENIX Security Symposium.

[53] Jian Xiang and Stephen Chong. 2021. Co-Inflow: Coarse-grained Information

Flow Control for Java-like Languages. In IEEE Symposium on Security and Privacy.
[54] Alexander Yip, Xi Wang, Nickolai Zeldovich, and M. Frans Kaashoek. 2009. Im-

proving Application Security with Data Flow Assertions. In ACM SIGOPS Sym-
posium on Operating Systems Principles.

[55] Wei You, Bin Liang, Wenchang Shi, Peng Wang, and Xiangyu Zhang. 2017. Taint-

man: An art-compatible dynamic taint analysis framework on unmodified and

non-rooted android devices. IEEE Transactions on Dependable and Secure Com-
puting.

https://ec.europa.eu/newsroom/article29/items/611233/en
https://www.bloomberg.com/news/articles/2021-07-30/amazon-given-record-888-million-eu-fine-for-data-privacy-breach
https://www.bloomberg.com/news/articles/2021-07-30/amazon-given-record-888-million-eu-fine-for-data-privacy-breach
https://www.broadleafcommerce.com
https://www.broadleafcommerce.com/customers/mlb
https://www.broadleafcommerce.com/customers/mlb
https://openmrs.org
https://openmrs.org
https://www.hl7.org/fhir/
https://www.hl7.org/fhir/
https://www.openolat.com
https://gatling.io
https://www.open-hospital.org/
https://jforum.net/
https://github.com/microsoft/playwright
https://www.reuters.com/technology/irish-data-privacy-watchdog-fines-whatsapp-225-mln-euros-2021-09-02/
https://www.reuters.com/technology/irish-data-privacy-watchdog-fines-whatsapp-225-mln-euros-2021-09-02/
https://www.cnbc.com/2022/01/06/google-hit-with-150-million-euro-french-fine-for-cookie-breaches.html
https://www.cnbc.com/2022/01/06/google-hit-with-150-million-euro-french-fine-for-cookie-breaches.html
https://github.com/SAP-samples/cloud-cap-samples-java
https://github.com/SAP-samples/cloud-cap-samples-java
https://spring-petclinic.github.io
https://spring-petclinic.github.io
https://github.com/informatik-mannheim/HSMA-CTT
https://github.com/informatik-mannheim/HSMA-CTT
https://spring.io

	Abstract
	1 Introduction
	2 Background
	2.1 Personal Data Processing under GDPR
	2.2 Dynamic Information Flow Tracking

	3 Software Requirements for GDPR
	3.1 Roles and Threat Model
	3.2 Compliance with Predefined Policies
	3.3 Ensuring an Adequate Level of Protection
	3.4 Reacting to Data Subject Requests

	4 Data Protection via Taint Tracking
	4.1 Metadata Structure
	4.2 Making Implicit Meta Information Explicit

	5 Processing Personal Data
	5.1 System Configuration
	5.2 Consent Assessment
	5.3 Persistence of Metadata
	5.4 Preventing Unlawful Processing
	5.5 Rights of the Data Subject

	6 Implementation
	6.1 Taint Engine
	6.2 Taint Persistence
	6.3 GDPR Tainting for Real Applications
	6.4 Full Example

	7 Practical Evaluation
	7.1 Selected Applications
	7.2 Use Cases
	7.3 Evaluation: Enforcement
	7.4 Evaluation: Robustness
	7.5 Evaluation: Performance

	8 Discussion
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

