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ABSTRACT
The General Data Protection Regulation (GDPR) and related regula-

tions have had a profound impact on most aspects related to privacy

on the Internet. By requiring the user’s consent for e.g., tracking,

an affirmative action has to take place before such data collection

is lawful, leading to spread of so-called cookie banners across the
Web. While the privacy impact and how well companies adhere to

those regulations have been studied in detail, an open question is

what effect these banners have on the security of netizens.

In this work, we systematically investigate the security impact

of consenting to a cookie banner. For this, we design an approach

to automatically give maximum consent to these banners, enabling

us to conduct a large-scale crawl. Thereby, we find that a user who

consents to tracking executes 45% more third-party scripts and

is exposed to 63% more security sensitive data flows on average.

This significantly increased attack surface is not a mere theoreti-

cal danger, as our examination of Client-Side Cross-Site Scripting

(XSS) vulnerabilities shows: By consenting, the number of websites

vulnerable to our verified XSS exploits increases by 55%. In other

words, more than one third of all affected websites are only vulner-

able to XSS due to code that requires user consent. This means that

users who consent to cookies are browsing a much more insecure

and dangerous version of the Web.

Beyond this immediate impact, our results also raise the question

about the actual state of client-side web security as a whole. As few

studies state the vantage point of their measurements, and even

fewer take cookie notices into account, theymost likely underreport

the prevalence of vulnerabilities on the Web at large.

CCS CONCEPTS
• Security and privacy → Web application security; Systems
security; Browser security.
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1 INTRODUCTION
The last two decades have witnessed increasing tensions regarding

the topic of online privacy. On the one hand, companies have been

keen to exploit the benefits in maximizing the collection of personal

data for profiling, marketing and advertising. This attitude is best

represented by Scott McNeally, then CEO of Sun Microsystems who

said: “You have zero privacy anyway — Get over it” [60]. On the

other hand, comprehensive legal regulations have been put in place

to protect the privacy of netizens. The European Union is one of

the main drivers of this legal shift with the ePrivacy directive and

the General Data Protection Regulation (GDPR), which came into

effect in 2002 and 2018 respectively. These regulations place strict

limits on when and to what degree personal data can be collected,

and how long it may be stored for. To comply with data protection

regulations, companies must first gain explicit consent from users

before collecting their data.

A common way to obtain this consent on the Web are via so-

called cookie banners. Thus, on a significant number of European

websites, the user is greeted by a dialog querying them about what

personal data the website is allowed to collect, what that data can

be used for, and with whom it shall be shared. In 2019, a study

by Degeling et al. [8] found that 62% of the investigated websites

already had such a cookie notice. While cookie banners are sup-

posed to give the user control over their personal data, they often

employ dark patterns to lure users into giving as much consent

as possible [5, 28, 34, 44] or overwhelm users with choices. For

example, the cookie banner on the website of the popular German

newspaper “Focus Online” (https://focus.de) queries the user about

their consent to share data with 168 third party vendors, making a

somewhat meaningful choice exhaustively time consuming. Thus,

mainstream media mainly portraits them as annoying [4, 27, 41]

and a thriving community around browser extensions blocking or

removing these banners developed.

https://doi.org/10.1145/3564625.3564647
https://doi.org/10.1145/3564625.3564647
https://focus.de
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While the effects of cookie banners on web user’s privacy have

been well studied, an open question remains: What is their impact
on the security of users? We propose the hypothesis that if data

collection requires consent by the user, the corresponding code

carrying out that collection should only be executed once consent

is given. Thus, providing consent via a cookie banner dialog will

increase the attack surface of a website’s JavaScript code and lead

to a reduction in security. This work aims to test this hypothesis

by studying the effect that consent has on the loaded and executed

JavaScript code and consequently the security of the including

website. For this, we first develop an approach to automatically

maximize the consent given to arbitrary websites. We then go on to

employ dynamic taint tracking to measure the amount of security

sensitive code that is executed only once consent has been given.

We show that accepting a cookie dialog leads to a increase of

63% in security related data flows. Additionally, we show that this

code is indeed the cause for actual vulnerabilities, using Client-Side

Cross-Site Scripting (XSS), one of the most common and severe

vulnerabilities on the web, as an example. We find that giving

consent significantly increases the amount of websites vulnerable

to XSS by 55%. This means more than one third of all affected

websites are only vulnerable to XSS due to code they execute once

consent has been given.

To summarize, our contributions are the following:

• Amethodology to automatically accept cookie dialogs, thereby

maximizing the consent given for tracking (Section 4).

• A study over the European web landscape, measuring the

effects of accepting a banner with a focus on additionally

loaded and executed code (Section 5).

• An analysis on the security impact of cookie banners based

on the increase of dangerous taint flows and Client-Side XSS

vulnerabilities after giving consent (Section 6).

2 BACKGROUND
Cookie banners are a fairly recent phenomenon, as they are a direct

consequence of regulation passed by the European Union over

the last two decades. In the following, we will first give a high

level overview over these regulations and the consequences for

website operators. Afterwards we will provide some background

on Client-Side Cross-Site Scripting (XSS), one of the most prevalent

and severe vulnerabilities on the Web.

2.1 Legal Background
In 2002, the EU passedDirective 2002/22/EC [38] and 2002/58/EC [39],

which are more commonly known as the “e-Privacy Directive”.

These directives defined the rights of the user in the realm of the In-

ternet, and how providers of electronic communication services are

supposed to handle their users’ data. Then in 2009 the “e-Privacy

Directive” was amended by Directive 009/136/EC [40], which is also

known as the “Cookie Directive”. This directive regulated online

tracking through cookies and other techniques, by forcing the site

providers to obtain permission before installing cookies beyond

those necessary for the basic functionality of the website [16].

Subsequently, in 2016, seven years after the “Cookie Directive”

came into effect, the EU adopted the General Data Protection Reg-

ulation (GDPR) [7], which became binding two years later at the

end of May 2018. This regulation aims to protect personal data of

European citizens, especially in the realm of the Internet. The GDPR

states in Article 6 that the processing of personal data is generally

prohibited, except for the cases where it is specifically allowed by

law, or when the data subject, (in this case the websites’ visitors),

provides their explicit consent to process data for specific purposes.

Thus websites started to employ so called “cookie banners” in order

to comply with the GDPR. These dialogs ask the user to provide

their consent for personal data processing and are a centerpiece of

our study.

2.2 Cross-Site Scripting
Before we dive deeper into the world of cookie banners, we also

need to introduce one of the most notorious vulnerabilities on the

Web. For this, we first need to discuss one of the main security

policies on the Web: the so-called Same Origin Policy (SOP). The

aim of the SOP is to limit which resources JavaScript code can

access to those from the same origin, where origin is defined as the

tuple of protocol, host, and port. Thus an attacker cannot access

the content of a website by, for example, simply loading it inside

a hidden frame hosted elsewhere. To interact with the content of

another website the attacker has to execute their code in the same

origin as the target website.

The class of vulnerabilities where an attacker injects code into

the origin of another website is known as Cross-Site Scripting

(XSS). This vulnerability class has been known since the turn of the

millennium [6]. When exploiting an XSS vulnerability, an attacker

injects JavaScript code either directly or within HTML markup into

a target website. This enables the attacker to execute code on the

website, allowing for example the exfiltration of credentials, reading

or manipulation of cookies or performing unwanted actions.

A subclass of XSS is the so-called Client-Side Cross-Site Script-

ing, also known as DOM-based XSS when it was first discovered in

2005 by Amit Klein [20]. Unlike traditional XSS, Client-Side XSS

vulnerabilities reside purely inside client-side JavaScript code ex-

ecuted in the web browser. As modern websites implement more

and more functionality in client-side JavaScript, the corresponding

number of DOM-based XSS vulnerabilities has also increased [52].

These vulnerabilities are especially interesting as they do not re-

quire knowledge about the server-side code. As all JavaScript of

a website is sent to the victim, an attacker can easily inspect the

loaded code and try to find vulnerabilities. Depending on the source,

it is possible that the exploit payload is never sent to the server

at all, making it very difficult for the websites operator to detect

attempted attacks.

The root cause for Client-Side XSS is when attacker-controllable

data is used with functions which interpret test input as code and

subsequently execute it. Examples for such functions, known as

sinks, are document.write, innerHTML (both HTML sinks) or eval,
a JavaScript sink. Several functions can act as sources of attacker-
controllable data, most prominently the URL. An example for such

a vulnerable data flow is provided in Figure 1. By cleverly crafting

an exploit URL, the attacker can add arbitrary markup into the

website which leads to arbitrary code execution, e.g., by including

"><script>alert(1)</script> inside the hash. Potential victims

can be lured into visiting the attacker’s URL via e.g., Phishing
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campains, and can be used to steal credentials from cookies or

exfiltrate credentials via keyloggers.

1 let app_id = location.hash.substr(1);
2 // application code
3 document.write('<img src="https://ad.com/?referrer='
4 + app_id + '">');

Figure 1: Data flow vulnerable to Client-Side XSS

3 COOKIE BANNERS UNDER THE HOOD
The visual interface of a cookie banner usually consists of two ma-

jor parts: On one hand the consent selection, which often allows

consenting to broader categories such Functional Cookies or Adver-
tisement Cookies. Consenting and objecting to individual purposes

and vendors must also be possible, but is usually hidden deeper in

the UI. On the other hand, one or more buttons to accept or reject

all cookies at once, or save the current selection of consents. One

such typical cookie banner, in this case from flickr.com, is shown in

Figure 2. As previous studies [12, 55] have shown, these banners

often employ dark patterns such as requiring much more effort to

reject than to accept, thereby nudging the user into giving consent

regardless of their true intentions. In contrast, in this paper we are

instead concerned about the effects that happen after consenting to
all cookies. Before we study this, we first need to take a closer look

at how a typical cookie banner implementation works under the

hood.

Figure 2: Example of typical cookie banner

While website owners do have the option to create their own

custom implementation, it is non-trivial to create a banner that

complies with all laws and regulations. Therefore, using a Consent

Management Provider (CMP) has become a popular choice. These

are middlemen that focus on collecting consent from the visitor

and forwarding it to the advertisers. They, in turn, rely on the

Transparency & Consent Framework (TCF) [11], which aims to help

all involved parties to comply with EU laws regarding accessing

and storing personal data, such as cookies. Their TCF API is what

allows CMPs to propagate the consent information in a standardized

manner. Thus, embedding the cookie banner provided by the CMP

frees the website owner from dealing with the legal intricacies

themselves.

The most important functionality that such a banner must pro-

vide is to ensure that no tracking cookies are stored and conse-

quently no advertisements are shown to the user before they con-

sent. In general, there are two ways to achieve this: The first is to

delay the inclusion of the third-party script until consent is given

as shown in Figure 3. This guarantees that the third-party is only

involved once consent is given. The second is to load the third-party

script from the beginning but in a state where it is running but

not yet storing cookies and then only later notify the script when

consent has been given, as shown in Figure 4. This latter option

only works for scripts that provide an API to update the consent

from within another script. Overall, this means that giving consent

increases both the amount of scripts included into the page, as well

as the amount of code that was already loaded but not yet executed.

1 __tcfapi("addEventListener", 2, function(tcData, success) {
2 if (success && tcData.unicLoad === true) {
3 var script = document.createElement('script');
4 script.setAttribute('data-ad-client', 'ca-pub-xxxxxxxx');
5 script.src = 'https://pagead2.googlesyndication.com/...';
6 document.head.appendChild(script);
7 }});

Figure 3: Delayed inclusion of Google AdManager (shortened
for brevity) [56]

1 gtag('consent', 'default', {
2 ad_storage: 'denied', analytics_storage: 'denied',
3 })
4 __tcfapi('addEventListener', 2, function (tcData, success) {
5 if (success && tcData.unicLoad === true) {
6 gtag('consent', 'update', {
7 ad_storage: 'granted', analytics_storage: 'granted',
8 })}})

Figure 4: Delaying all Google tag cookies until the users con-
sents (shortened for brevity) [57]

4 AUTOMATICALLY MAXIMIZING CONSENT
In order to analyze the difference before and after giving consent

to the cookie banner in an automated fashion, we designed an

approach called Acceptify, which automatically finds the cookie

banner and its corresponding accept button on arbitrary websites.

Note that in contrast to prior works on automatically interacting

with cookie banners, such as I don’t care about cookies [19], we can
not just detect the banner and hide it from the user, but also need

to find the correct element inside that banner that will maximize
consent when clicked.

flickr.com
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To achieve this, we exploit two key aspects: First, the banners

have to be the point of first interaction, i.e., they can not be hidden

behind other elements and need to visible at the top layer of the

page. Second, they need to ask the user to consent to the tracking,

i.e., they have to present a choice between multiple options in a

human-readable fashion.

4.1 Acceptify: Design and Implementation
Using these insights, we can find the element that maximizes con-

sent as follows: First, we compile a list of candidates, i.e., HTML

elements that are likely related to cookies and giving consent. We

consider all elements in the page (including all its iframes) as can-

didates, if they match the following three criteria:

(1) They are clickable, i.e., have the .click property. If the el-
ement can not be clicked, then it is not relevant for giving

consent.

(2) They contain a word or phrase from our manually compiled

list of 43 words across 9 different languages, with entries

such as Accept, Got it, and Permettere.
(3) Their text content is short, i.e., consists of a maximum of 200

characters across 6 words. The rationale here is that we do

not want to consider whole paragraphs of text that include

these words, but only elements that conduct an action, which

are usually brief and concise.

At this point, if there is only exactly one candidate, Acceptify

considers this as the correct element for maximizing consent and

the search stops. Similarly, if there are no candidates, Acceptify

concludes that there is no cookie banner on this page and the

search stops. On the other hand, if we found multiple candidates,

we proceed as follows: First, we prioritize certain HTML elements

over others: Buttons get the highest priority, followed by links and

then div elements. If there are multiple buttons, we proceed only

with those. Should there be none, we take all links etc. and if none of

the candidates are of these types, we just proceed with all of them.

Next, we apply multiple filters, i.e., try to further reduce the number

of candidates until there is only one candidate. However, should

a filter reduce the amount of candidates to zero, then it is ignored.

The reason these checks are only filters and not strict requirements

for being considered as a candidate, is that, unfortunately, not all

websites adhere to the requirements of making the accept button

visible at the top level within the current viewport.

Our first filter checks if only some of the candidates are visible

by comparing the offsetParent property. After that, we check if

only some of the candidates are within the current viewport, i.e.,

visible without scrolling by comparing getBoundingClientRect
to the current screen dimensions. Next, we check if some of the

candidates contain bad words, i.e., words that indicate a negative
action such as not, refuse, or nur. Finally, we check if only some

of the candidates are displayed at the top of the screen, using the

code shown in Figure 5. Should, after all these filters there still be

more than one candidate, we then abort the search as inconclusive.

Usually however, after all these additional steps only one candidate

remains, of which we are fairly confident as being the element that

will maximized consent when clicked.

1 function isTopLevel(ele) {
2 let {x, y} = ele.getBoundingClientRect();
3 return ele === document.elementFromPoint(x,y);
4 }

Figure 5: Checking if an HTML element is visible at the top

4.2 Manual and Automated Verification
To ensure we actually click on the correct button with Acceptify, we

conducted a preliminary crawl and thereby validated it twofold: On

one hand, we manually verified the results using visual inspection

on a random subset of the visited websites. On the other hand, we

used the TCF API as an automated oracle, as we will outline in the

following.

Manual visual inspection. First, we manually investigated if the

selected button corresponds to what a human would identify as

the “accept all cookies” button, using visual inspection. For this,

we took a random sample of 250 from the 10,000 most popular

websites and visited them with a modified version of our Acceptify

implementation. Instead of clicking the button, the modified version

visually highlights the determined candidates for the accept button

using CSS rules and then creates a screenshot of the page instead

of clicking the button. This way, we can quickly check for false

positives and false negatives in the collected images.

Our manual inspection of the 250 images showed the following:

• True positives: On 99 websites, a banner was present and

correctly detected.

• False positives: On 3 websites, no banner was present but

Acceptify detected another, unrelated button.

• True negatives: On 98 websites, no banner was present and

none detected.

• False negatives: On 48 websites, a banner was present but

Acceptify could not detect it. On 5 of these, there was a

banner present, but multiple buttons were equally likely. In

the remaining cases, no button was detected, e.g., due to

unsupported language or uncommon phrasing.

• Unknown: On 2 websites, the visual inspection failed due to

an error and the screenshot being completely white.

While the number of false negatives is significant, this is no

cause for concern in the context of our paper. Our main goal is to

measure the effects of accepting a cookie banner, therefore we focus

on having as few false positives as possible. This is also the reason

why we do not click any button at all instead of guessing which

might be the most likely, in case there are multiple viable candidates

for the accept button. While our collected data on websites with a

cookie banner is not complete, this underreporting ensures that, for

the most part, the collected data is correct.

Using TCF as a verification oracle. Additionally, we used the

TCF API [11] to obtain a machine-readable information about the

consents given to the website. While the legal status of the TCF

is disputed [2, 45], it is still widely deployed and helps to show

the efficacy of our approach. The TCF API, if present on a website,

allows us the query the consents given by the user before and after

we clicked on the cookie banner and can thus be used as another
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indicator if our Acceptify approach correctly interacted with the

website. The current consent status can be queried from JavaScript

as shown in Figure 6. If the website implements TCF correctly and

Acceptify clicked the correct button, we expect the consents, which

we simply represent as a sum, to increase.

1 __tcfapi('getTCData', 2, function(tcdata) {
2 if (!tcdata.purpose || !tcdata.purpose.consents) {
3 return -1;
4 }
5 return Object.entries(tcdata.purpose.consents).reduce((prev,

curr) => curr[1] ? prev + 1 : prev, 0);↩→
6 });

Figure 6: Querying the level of consent with the TCF API

In order to evaluate our technique, we identified 2,278web pages

from the data set used for the later experiments where Acceptify

detected a cookie banner and the TCF API was present. More de-

tails on website selection can be found in Section 5. Out of those,

123 did not implement the API correctly, i.e., by not providing all

the mandatory fields to query the purpose level as shown on Fig-

ure 6 on line 2 or not invoking the callback at all. For 250 clicking

the button did, unfortunately, not lead to a increase in consent.

Manual inspection showed these were mostly caused by either ac-

cepting something unrelated to cookies, such as notifications or a

newsletter, or accidentally clicking an element that did not maxi-

mize consent, due to our lack of supporting all possible phrases in

all languages spoken in the EU. However, with 1,905 of the websites

correctly implementing TCF, Acceptify’s interaction did lead to

cookie consent, demonstrating that it performs well in a real-life

setting in an overwhelming majority of cases (88.40%).

5 EFFECT OF CONSENTING COOKIES
Now that we have a reliable way to automatically accept cookies

with Acceptify, we use this approach for a comprehensive study on

the resulting effects of consenting to cookie banners in the wild. In

order to achieve this, we conduct a large-scale study on websites

within the EU as we describe in this chapter.

5.1 Experimental Setup
In the following, we will first describe our website selection and

the parameters of our crawl.

Website selection. The focus of our experiment is on the European

web landscape. While non-European websites might have adopted

cookie banners due to the extraterritorial effects of GDPR, it is

mainly a EU centric phenomenon. We thus chose to crawl a subset

of the Tranco list [24]. We first excluded entries originating from

Cisco Umbrella with the List configurator on the Tranco website

(https://tranco-list.eu/configure) as they are DNS based and contain

URLs not available to a web browser. We then took the first 1,000

entries for each EU countries TLD, generic TLDs related to the

EU, as well as the UK, .com, .org and .net. The latter are used by

both European as well as non European entities and the UK is still

largely aligned with the EU from a regulatory point of view. This

left us with 28,718 domains to visit. This selection is aligned with

established literature, such as by Matte et al. [28]. We will make

the list and the selection automatism available upon acceptance to

aid reproducing our work.

Crawling setup. Our crawl took place from 20th to the 23rd of

May 2022, using one server with 80 cores, 192GB RAM, and with

an European IP address, on which we ran 20 worker instances in

parallel. These workers based on Playwright
1
in version 1.21, which

we modified with our custom crawling implementation that we will

describe in more detail in the next subsection. For our browser we

used “Project Foxhound” in version 96.0.3
2
, a Firefox fork enhanced

with taint-tracking for both SpiderMonkey, its JavaScript engine, as

well as Gecko, Firefox’s rendering engine. This allows us to capture

data flows related to potential security issues. Exploit generation

and validation were done in parallel with the regular crawling, to

minimize the time between the initial visit and the validation. As

websites tend to change frequently, taint flows are fairly volatile.

So in addition to the regular crawling, we had 8 validation workers

running in parallel.

5.2 Implementation
On each website, we waited for the load event for a timeout of up

to 30 seconds, otherwise we flag the website as unavailable and

move on. Once the website did load successfully, our crawler waits

for an additional 5 seconds before interacting with it. This gives

the website more time to load additional dynamic content, such as

the cookie banner itself. From there, our implementation proceeds

as follows: First, we execute Acceptify in the main frame, as well as

all iframes, if there are any. We then merge the results of all these

executions and check the number of elements that Acceptify has

returned. If there are none or multiple, we stop here as there is

either no banner or it is not entirely clear which element would

maximize consent. If Acceptify detected exactly one element that

will maximize consent, it clicks this element and waits for another

10 seconds to allow the website to load dynamic content, such as

ads, based on the newly given consent. Moreover, if we detected

and accepted a cookie banner on the landing page with Acceptify,

we now queue an additional 20 links to subpages within the same

domain. This allows us to detect data flows which rely on e.g., URL

parameters being present and is important to increase our coverage,

e.g., as landing pages rarely make use of location.hash. Finally,
we also serialize and store all cookies before and after interacting

with the cookie banner, as this allows us the verify the security

impact of giving consent, as we will describe in the next section.

5.3 Results
Out of the list of 28,718 landing pages, we successfully visited

23,113 of them. 1,780 sites failed due to network errors, such as

DNS resolution errors or a refused connection. Moreover, 1,133

sites did not successfully load within our timeout, causing our visit

to abort. Another 888 sites returned an HTTP error in the 4XX or

5XX range. Finally, 1,804 sites failed for various other reasons, such

as crashing the crawler or taint browser. Including all sub pages,

we visited 176,273 pages in total across these 23,113 sites.

1
Available at https://playwright.dev

2
Available at https://github.com/SAP/project-foxhound/releases/tag/v96.0.3

https://tranco-list.eu/configure
https://playwright.dev
https://github.com/SAP/project-foxhound/releases/tag/v96.0.3
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Out of the successfully visited sites, Acceptify detected and

clicked on a consent button on 8,149 (35.26%) of them. Figure 7

shows how the selected websites are distributed unevenly across

the Tranco ranking, as our selection approach creates a bias to-

wards the lowest ranks, i.e., the more popular websites. However,

as the figure also shows, these are also the most likely to employ a

cookie banner, with banners on almost half of all sites in the top

100k compared to less than one fifth of the sites in the higher ranks.

100K 300K 500K 700K 900K

Tranco rank

0

2000

4000

6000

8000

#
si

te
s

Sites in filtered list

Sites with banners

Figure 7: Distribution of websites and cookie banners across
the Tranco ranking. Due to our filtered list of 23,113 success-
fully visited sites with a focus on EU content, these sites are
not evenly distributed.

In the following, we describe the resulting effects of consenting

to cookies in more detail, focusing on two aspects: The effect on the

number of stored cookies and on the amount of loaded JavaScript

code. For all these analyses, we only consider the 8,149 sites where

we found and interacted with a consent button. The results for these

two analyses are summarized in Table 1, which we will describe in

more detail in the following.

Table 1: Impact of Acceptify on cookies and scripts

Resources Sites Initial Accept Increase

Cookies

First Party 8,085 71,538 119,318 66.79%

Third Party 7,181 38,260 167,814 338.61%

Scripts

First Party 7,699 97,953 98,739 0.80%

Third Party 7,931 117,165 169,352 44.54%

Effect on stored cookies. First of all, we studied the number of

stored cookies before and after consenting to cookies, as another

validation that our Acceptify approach works as expected. Initially,

these 8,149 sites did set a total of 109,798 cookies during the first

load of the page, i.e., each site does set an average of 12.70 cookies

without any interaction by the user at all. Themajority of themwere

first-party cookies, with 8.27 from a first party on average compared

to 4.42 third-party cookies on average. After running Acceptify and

thus maximizing consent, these numbers changed to a total of

287,132 cookies, i.e., an increase of over 20 additional cookies per

site on average. It is also noteworthy that the number of first-party

cookies increased only by 66.79% from 71,538 to 119,318 cookies,

while the number of third party cookies increased by 338.61% from

38,260 to 167,814 cookies. We see this as another demonstration

that Acceptify works as expected, as the number of cookies, and

especially the number of third party cookies that typically require

consent by the user, did increase significantly after our interaction.

Effect on loaded scripts. Looking at the number of loaded scripts

within the main frame of the website as a first approximation for

executed code, we see an even clearer effect towards more third

party inclusions after consenting to cookies. At first, loading our

set of 8,149 sites without any interaction caused the inclusion of

215,118 scripts, i.e., an average of 24.87 scripts per website. These

are roughly evenly distributed across first- and third-party scripts,

with 11.33 first- and 13.55 third-party scripts on average per site.

After consenting to cookies the total number of scripts increased

to 268,091 or an average of 31.13 scripts per site. However, the

number of first-party scripts increased only very slightly from

97,953 to 98,739 scripts. On the other hand, the number of third-

party scripts significantly increased from 117,165 to 169,352 scripts.

In other words, while accepting cookies has almost no impact on

the amount of first-party code that is executed, the simple action

of consenting cookies increases the amount of third-party code by

44.54%. As we will investigate next, this increase and code and thus

attack surface has a considerable impact on the client-side security

of the affected web applications.

6 SECURITY IMPACT
As highlighted in Section 5.3, consenting to data collection by click-

ing accept on a cookie banner has a profound impact on the amount

of code a website loads and executes. As these additional JavaScript

files are loaded in the security domain of the main website, this can

weaken the security of the including website. While the additional

code is required, e.g., to enable data collection, it might also expose

the user to vulnerabilities if said code was written in an insecure

fashion. By using a taint enabled browser, we can also measure

data flows between security sensitive sources and sinks to get an

idea about the amount of security sensitive code a user is exposed

to. Dynamic taint tracking allows us to capture a complete view

of the effect consenting has on the execution of JavaScript code.

Not only do we detect data flows in newly included scripts, we also

detect data flows located in previously loaded scripts but only now

triggered by the user’s interaction.

6.1 Taint Flows
The mere number of included scripts is not necessarily represen-

tative of the amount of actually executed code. Therefore, we also

report on the increase in security relevant taint flows as a result of

accepting the cookie banner. Security sensitive taint flows are data

flows where the source is attacker-controllable data and ends up

in a sink related to client-side security issues. Not every website

where Acceptify interacted with a cookie banner contains security

sensitive data flows. However, with 7,577 out of the 8,149 sites,

the vast majority of 92.98% websites do so. We then divided these

security relevant taint flows into three categories, as described in

the following:

(1) Reflected: The tainted value is directly written into the web-

site, either in dynamically evaluated JavaScript code or into
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the DOM. The value is thus reflected back to the user, causing

direct code execution. The number of taint flows in this cate-

gory increases from 455,258 to 746,414, by 60.99%. Especially

worrisome is the large increase of data flows into JavaScript

sinks, as writing a sanitizer for such sinks is especially diffi-

cult due to the syntactical complexity of JavaScript.

(2) Generic: Here the attacker-controllable data is used as in-

put for a postMessage, allowing the attacker to potentially

influence cross origin communication and attack resources

embedded into the website. This category sees the sharpest

increase, from 2,625 to 5,863, by 123.35%.

(3) Stored: The tainted value is written into the browser’s stor-

age, either as a cookie or into localstorage. This can be used

to achieve stored XSS or to manipulate the users profile for

example. Here the number of taint flows increased from

38,167 to 56,685, by 67.33%.

In total, the amount of security relevant taint flows increases

from 496,050 to 808,962, i.e., by 63.08%. This highlights a significant

increase in security sensitive code which is inserted and executed

in the including page’s origin upon consenting to data collection.

Thus, allowing data collection automatically exposes the user to ad-

ditional security risks, they might be unaware of. A comprehensive

breakdown of the taint flow statistics is provided in Table 2.

Table 2: Impact of Acceptify on recorded taint flows

Sites Initial Accept Increase

Taint Flows 7,577 496,050 808,962 63.08%

Reflected XSS:

URL→ HTML 452 1,970 2,657 34.87%

URL→ JavaScript 112 1,480 3,024 104.32%

URL→ URL 7,474 451,808 740,733 63.95%

Generic URL→ postMessage 499 2,625 5,863 123.35%

Stored XSS:

URL→ cookie 2,645 20,444 31,942 56.24%

URL→ LocalStorage 1,542 17,723 24,743 39.61%

6.2 Exploit Generation and Verification
Each additional reported taint flow increases the exposure to secu-

rity risks. If one data flow lacks proper sanitization, i.e., ensuring

no harmful characters pass through to the sink, the website as a

whole becomes insecure. However, not all security relevant taint

flows result in exploitable vulnerabilities. They might either employ

sanitization or the surrounding application logic might ensure no

code execution takes place, e.g., by parsing the tainted value as a

number.

Thus, to measure the security impact of the additional code that

is executed after accepting a cookie banner in terms of actual vul-

nerabilities, we generate proof-of-concept exploits and validate

them. For this, we focus on Client-Side XSS, as it consistently ranks

among the most common and severe security risks for web appli-

cations over the last decade [35–37]. Our XSS exploit generation

strategy is in line with prior work [25, 29, 53], thus we will only

give a short overview here. For a more detailed discussion on gen-

erating exploit URLS for Client-Side XSS, we refer the reader to

these works.

Generally speaking, our exploit generator produces an injection-

context-specific breakOut sequence, a sink-specific payload, and an

injection-context-specific breakIn sequence. For example, looking

back at Figure 1 where the attacker controlled data ends up in a

double-quoted attribute of an img tag. To break out of this context,
we first close the attribute with the corresponding quote type and

then close the tag itself. The resulting breakOut is thus ">. Next, we
generate a payload suitable for the sink function. To detect that code

execution did occur, an alert box inside a script code is generated

as the payload in this case. The breakIn sequence aims to return

the parser to a state where it does not cause an error due to the

now dangling characters that originally closed the img tag. For the

HTML context this is not necessary, as the HTML parser tolerates

the dangling "> suffix, which is hard coded after the injection point.

Thus for the given example, the exploit payload would look as

follows: "><script>alert(’XSS’)</script>.
If the injection takes place in an attribute context of an HTML ele-

ment where code execution without user interaction is possible, e.g.,

onload or onerror, the payload is simpler. Instead of breaking out

of the enclosing tag, we first break out by the current attribute with

the corresponding quote, add the event handler to the tag and lastly

reenter an attribute. For example, for a double-quoted attribute,

we would generate the following exploit: " onload=alert(’XSS’)
onerror=alert(’XSS’) x=". This makes the generated exploits

highly specific to the injection context encoded in the taint flow.

Our approach diverges from prior work when validating the

exploit URL: In addition to the raw taint flows, we store the current

page’s cookie jar with every flow. Then, when validating a Client-

Side XSS exploit URL, we visit the URL twice: once without cookies

and once with the cookies stored with the taint flow. If the vulnera-

bility relies on the cookie banner being accepted, only the second

visit should result in code execution. Exploit validation is done with

legacy URL encoding, in line with previous works [21, 25, 29, 50].

We only measure the vulnerabilities occurring in the first party,

i.e., the website we directly visit. Vulnerabilities in third party

frames are out of scope for ourwork, as exploiting the actual website

is a lot more involved, requiring e.g., postMessage.

6.3 Discovered Vulnerabilities
Of the 8,149 websites where Acceptify successfully interacted with

a cookie banner, our exploit generation strategy was able to gener-

ate an exploit on 1,395. Out of those, we found 73 domains to be

directly vulnerable to Client-Side XSS. That is, their vulnerabilities

are independent from consenting to cookies, as the vulnerability

resides in the code providing regular functionality of the website.

However, on 44 out of the investigated domains we confirmed XSS

exploits that require consenting to cookies, i.e., the consent did not

only increase the available attack surface but did result in addi-

tional vulnerabilities introduced into the website. Moreover, 9 of

those domains contain both vulnerabilities requiring cookies and

vulnerabilities that do not.

In other words, over one third of the domains with Client-Side

XSS are only vulnerable if the user has given consent to data collection.
This increase of 55% closely aligns with the increase of security

sensitive data flows (63.08%), highlighting their the significant im-

pact on security. Thus, without giving prior consent, an attackers
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capability of exploiting a user is greatly reduced. This means that

attacks without user interaction, e.g., the common approach of

loading the vulnerable website in a hidden iframe, would fail unless

the victim had given consent on a previous visit.

Looking at the distribution of XSS vulnerabilities across the

website ranks in Figure 8, we find that their distribution is similar to

the one shown in Figure 7, as websites ranked higher are more likely

to employ tracking and thus a cookie banner. Consequently, they are

more likely to be affected by the security issues studied in this work.

This again highlights the high relevance of our findings, as the most

popular websites are most often affected by these vulnerabilities,

but at the same time also represent the most valuable targets for

attackers.
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Figure 8: Vulnerabilities across the Tranco ranking. Trun-
cated to the first 250,000 entries for readability. Outside of
this range are 1 domains with XSS after consent, 17 domains
with direct XSS and 3 domains containing both.

7 DISCUSSION
The presented results highlight the significant impact that privacy

regulations have on the security of websites. An increase of security

sensitive data flows by almost 65% significantly raises the risk for

web users. As we have shown, due to these additional flows, we

were able to exploit a considerable amount of websites that would
have been secure otherwise. In the following, we make a call to action

for both browser vendors and security researchers to improve this

situation. Moreover, we discuss our limitations, potential future

work, as well as ethical considerations.

7.1 Calls to Action
In the following we use our results to motivate fine-grained browser

security policies and more awareness of the impact of cookie ban-

ners in security studies.

Call for effective countermeasures. We see our findings as a call

to action for browser vendors. The root cause for the increase in

security related data flows is that additional code is executed inside

the security perimeter of the including website. Thus, every vulnera-
bility in such code, loaded from third parties and thus out of control

of the website operator, also affects the including website. Browsers

already support mechanisms to minimize the attack surface by iso-

lating such third-party code, e.g., by loading it into an sandboxed

iframe. However, this strict isolation hinders many use cases such

as advertisements and tracking, which rely on accessing all of the

user’s interaction with the website and not just interactions within

the iframe. Thus, most ad providers still expect their code to be

included directly into the website.

The underlying issue is that the browser currently does not

support a way to provide finely grained security policies, i.e., to

accurately describe what a certain piece of code can do and restrict

all other actions. Since no such mechanism exists, this gives the in-

cluded code full control over the website. Several countermeasures

have been proposed to counteract this problem, some of which we

will discuss in our related work. However, none of these have found

wide-spread adoption by browsers or advertising providers. While

the latter have few incentives to limit what they can do, the browser

vendors should be concerned about their users’ security. We thus

encourage browser vendors to finally adopt a permission model

that finds a good compromise between usability for third-party

code providers and security for their users. The recently published

postmortem of failed solutions [48] provides a great starting point

to steer future permission models into the right direction.

Call for incorporation during research. Additionally, we also see

this as a call to action for web security researchers to incorporate

these findings into future studies. As we found, crawling from

within the EU can have a considerable impact on the default security

level of a website, i.e., more sites appear to be secure than they are

as their vulnerabilities are hidden behind a consent banner. This

means, to accurately measure the prevalence of client-side web

vulnerabilities, researchers should either select a vantage point

that is not affected by strict privacy regulations or adopt similar

strategies as we presented with Acceptify, to take cookie notices

into account. Unfortunately, according to Demir et al. [9] only 25%

state the vantage point of their crawls in their papers. This means

we have to assume that the actual state of the security landscape on

the Web is most likely even worse than previously assumed, as all

data collections over the last years from within the EU are affected

and would underreport on vulnerabilities. In order to improve the

situation by accelerating the adoption of cookie-aware security

studies, we plan to make the source code of Acceptify available on

publication of this paper.

7.2 Future Work
In the following, we briefly discuss some limitations of our work

and promising research directions for future work in this space.

Automatically interacting with banners. To support a large-scale

study on the security impact of consenting cookies, we designed an

automatic approach to maximize consent called Acceptify. While

we have shown that our Acceptify approach performs reasonably

well, there are nevertheless cases in which it could perform bet-

ter. For once, the EU has 24 official languages, making complete

support for all consent related phrases in all languages challeng-

ing. Therefore, we focused only on common phrases in the most

common languages. However, this is not a general limitation of our

approach and could be improved with further refinements and feed-

back from native speakers. Moreover, there are many edge-cases,

such as sites that accidentally display multiple banners or have

one in their DOM, but do not display it, in which case the current

implementation does not take any action. Overall, it is important to
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note for the scope of this paper there was no need for Acceptify to

be complete as our main goal was to highlight the differences before

and after consenting to cookies. In other words, the exclusion of

some banners (due to e.g., unsupported languages) will have no

effect on our numbers beyond reducing our sample size. One thing

to keep in mind for future research is that the number of cookie

banner implementations and frameworks could become further

fragmented, thus complicating automatic interactions. This is due

to the decision that the TCF has been ruled unlawful [2], which

was one of the largest consent management providers at the time

of writing.

Precise attribution of parties. Our data analysis relies on sepa-

rating cookies and scripts into originating from either a first- or

a third-party. However, correctly attributing domains to parties

is still an somewhat unsolved problem, especially when dealing

with large companies that own many domains. For example, con-

sider a script inclusion from google.com to youtube.com, or from
facebook.com to fbcdn.com. While the domains are not related

on any hierarchy, both these examples might still actually repre-

sent a first-party inclusion as both are owned and operated by the

same company. One proposed solution for this is the notion of

an extended Same Party [49], which can deal with many of these

issues expanding the set of domains that are considered to be the

same party. A downside of this technique is that it relies on various

heuristics to group related domains. On the other hand, the draft

for First-Party Sets [59] would allow websites to describe which

other domains should be considered first-party to them in a mutual

fashion. Should this standard find wide-spread adoption, it would

allow an even more precise attribution of parties in the future.

Crawling coverage. Another limitation of our study is that due to

time and resource constraints, we can only visit a limited amount of

sub-pages on each domain. Therefore, might have missed security

relevant taint flows and consequently XSS vulnerabilities. As such,

our results should only be seen as a lower bound that demonstrates

the relative difference between the amount of vulnerabilities before

and after consenting to cookies. There are already multiple possible

research efforts in progress to increase this crawling coverage be-

yond merely crawling for longer and with more resources. On one

hand, Eriksson et al. [10] demonstrate how a data-driven approach

can tackle these crawling challenges in a generic fashion. On the

other hand, there is also research on specific sub-problems that

hinder this so-called deep crawling of web applications. For exam-

ple, Jonker et al. [17] recently published their approach to enable

post-authenticated crawling, by automatically registering and log-

ging in on arbitrary websites. By making use of these and similar

techniques, future work could paint a more complete picture of the

prevalence of these XSS vulnerabilities in the wild.

Exploit generation and validation. While the general techniques

to automatically generate Client-Side XSS exploit URLs are well

studied and understood [25, 29], they only cover basic cases. Tak-

ing into account more of the application logic can lead to more

discovered vulnerabilities. The named approaches only support a

small subset of JavaScript functions for for exploit generation, such

as encoding functions. A more complete view of the operations on

the tainted string, such as ensuring JSON formatted values stay

valid or placing the exploit inside encoded values might improve

the detection rate.

On a similar note, input sanitization is not taken into account

in our study. Incorporating automated sanitizer security analysis

and transformation of the payload to bypass an insecure sanitizer,

such as the technique presented by Klein et al. [21] would likely

improve the vulnerability detection rate.

7.3 Ethical Considerations
Probing a website for vulnerabilities involves interacting with the

infrastructure of its operator. To avoid any service interruptions or

harm for their users, we selected Client-Side Cross-Site Scripting

as the vulnerability class to evaluate. As this vulnerability purely

resides in the client-side JavaScript code, we can simulate both the

attacker and the victim. In other words, injected code is executed

in the browser and in the majority of cases never sent to the server.

Additionally, the chosen payload to detect code execution was

carefully chosen such that it is specific to our setup. Thus, even if

the website somehow turns the vulnerability into e.g., a stored XSS,

the payload will not interrupt the websites functionality. Moreover,

we are planning to contact all affected domain owners to help them

resolve their issues before making our findings public.

8 RELATEDWORK
The related work can be roughly divided into three parts, studies fo-

cused on cookie banners, works related to client-side vulnerabilities,

and existing countermeasures trying to solve this issue.

8.1 Cookie Banners
Since the GDPR went into effect in 2018, there have been many

academic works on both its legal as well as privacy aspects. For

example, Hils et al. [12] studied the ecosystem of Consent Manage-

ment Providers (CMPs) and found their adoption doubled twice

each year between 2018 to 2020. Sanchez-Rola et al. [43], on the

other hand, recently published a more general investigation into

the whole cookie ecosystem and all its actors, not limited to CMPs.

Sanchez-Rola et al. [42] focused on the tracking on high-traffic web-

sites from inside and outside the EU and compared the information

presented to the user and the actual tracking implemented through

cookies. While they found that sites started to reduce tracking due

to third-party opt-out services, tracking was still ubiquitous as they

found cookies that can identify users on more than 90% of the sites

in their dataset.

Following on that, Santos et al. [44] defined 22 requirements for

cookie banners, while Matte et al. [28] tried to identify potential

legal violations of TCF cookie banners, which are banners that

follow IAB Europe’s Transparency and Consent Framework [11].

During their tests they found suspected violations in 54% ofwebsites

checked. Nouwens et al. [34] studied the impact of a banners design

on the choices users make regarding consent. Finally, Bollinger et al.

[5] used machine learning to automatically interact with cookie

banners in order to discover GDPR violations at scale, finding at

least one violation in almost 95% of all websites they analyzed.

Browser extensions such as Consent-O-Matic [22] and Cliqz Au-

toconsent [26] already exist to automatically provide a user’s cookie

policies. In contrast to Acceptify, however, these techniques rely on
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detection of DOM elements of supported CMPs. CookieBlock [5]

is a similar extension which filters cookies which violate a user’s

global privacy settings, but does not automate cookie banner in-

teraction. As mentioned earlier, the I don’t care about cookies [19]
extension simply hides cookie banners from users, but does not

attempt to apply an overall privacy policy.

Overall, in contrast to these previous publications that focused on

the privacy and legal aspects of cookie banners and the GDPR, our

paper investigates an orthogonal issue, i.e., the security implications

of consenting to these banners in the context of XSS.

8.2 Client-Side Vulnerabilities
Awide range of academic work has studied the prevalence of client-

side vulnerabilities on the Web. First of all, the usage of outdated

JavaScript libraries [23] and the security consequences of includ-

ing third-party code [13, 33, 49] have seen significant academic

attention over the last years. Moreover, there also many other rele-

vant vulnerabilities such as attacks abusing insecure PostMessage

handlers [47, 51] or Prototype Pollution [18].

Yet, of all these web vulnerabilities, Cross-Site Scripting has

received the most academic attention due to being a vulnerability

that is both ubiquitous and severe and is consequently also the

focus of our work. Looking back to 2013, Lekies et al. [25] first used

a taint-tracking enabled browser to detect security relevant data

flows on websites, automatically crafted exploit payload URLs and

validated them to study the prevalence of Client-Side XSS. Later

works have built on their methodology, improving various aspects

such as the exploit generation [3, 29, 53] as well as adding support

for persistent variants [50].

In addition to studying the prevalence of Client-Side XSS, addi-

tional aspects have been researched. For example, Stock et al. [52]

studied the evolution of Client-Side XSS, highlighting how Client-

Side XSS rose to prominence together with the Web 2.0. To gain

a deeper understanding on how such vulnerabilities occur, Stock

et al. [53] have first investigated the complexity of the vulnerable

code resulting in code execution. Later Klein et al. [21] investigated

the approaches websites take to protect themselves against XSS.

Our work builds on these listed insights. However, to the best

of our knowledge, the security benefits of cookie banners and the

resulting risks of giving consent to these banners with respect to

XSS have not yet been studied.

8.3 Existing Countermeasures
Over the years there have been many attempts to allow the inclu-

sion of third-party code without compromising the security of the

including site itself, which would prevent the vulnerabilities that

we discuss in this work. First of all, multiple approaches that modify

the browser to enforce security policies were proposed, such as

BEEP [15], Conscript [30] and WebJail [58]. However, lacking

support by browser vendors, these have not found widespread use.

On the other hand, there were also approaches to create a safe

subset of JavaScript, like Caja [31], JSand [1], and Treehouse [14].

While their implementation does not require changes to the under-

lying browser, it does mean a rewrite of all untrusted code. Lacking

support from third-parties such as advertisement networks, these

approaches likewise struggled to solve the underlying problem.

Beyond that, there were also academic publications on defensive

mechanisms that need neither browser modifications nor support

by third-parties. For example, Ter Louw et al. [54] proposed AdJail,

an isolation framework specifically designed for advertisements,

while Musch et al. [32] proposed ScriptProtect, a mechanism that

prevents the introduction of Client-Side XSS through benign-but-

buggy third parties such as advertisement providers. Finally, Snyder

et al. [46] built a browsing extension that allows to selectively

disable DOM features, in an attempt to reduce the attack surface

by disabling features which are not needed by a website. However,

despite all these efforts, insecure third party code is still a significant

contributor to vulnerabilities even today, as our results have shown.

9 CONCLUSION
In this paper we have tested the hypothesis that accepting cookie

banners will lead to an increased security risk for users. The argu-

ment being that consenting to tracking should lead to an increase

in the amount of additional code loaded in, and executed on the

including website. As each additional fragment of code can intro-

duce vulnerabilities affecting the website as a whole, this can have

a significant impact on the security of all visitors.

To explore this phenomenon, we designed an approach that auto-

matically maximizes consent on all visited websites and used this to

perform a large-scale study over the European web landscape. We

then used this setup to evaluate the effect that accepting a cookie

dialog has on the security of the loaded and executed code. We

found that giving consent to these banners indeed leads to 45%

more third-party scripts being included into the site. Moreover, the

number of security sensitive data flows, i.e., flows that are poten-

tially exploitable, increases by an even larger margin of 63%. To

highlight the actual security impact of this additional code with con-

crete vulnerabilities, we generated proof-of-concept exploits using

Client-Side XSS as an example. Thereby, we found that the number

of websites vulnerable to XSS increases by 55% after consenting.

This means that more than one third of all affected websites are

only vulnerable to XSS due to the code they execute after consent

has been given.

In conclusion, the initial question – does consenting to cookie

banners have a negative security impact – can be answered with a

resounding yes. We found that consenting significantly increases

both the theoretical attack surface, as well as the actual exposure

to concrete XSS vulnerabilities. Our results motivate two calls to

action: firstly for browser vendors to implement more effective

countermeasures against vulnerabilities in third-party code, and

secondly to security researchers to ensure they do not ignore the

security impact of cookie banners and effectively underreport the

prevalence of vulnerabilities on the web.
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