
Poster: The Risk of Insufficient Isolation of Database
Transactions in Web Applications

Simon Koch∗
TU Braunschweig

simon.koch@tu-bs.de

Malte Wessels∗
TU Braunschweig

malte.wessels@tu-bs.de

David Klein
TU Braunschweig

david.klein@tu-bs.de

Martin Johns
TU Braunschweig
m.johns@tu-bs.de

Abstract
Web applications utilizing databases for persistence frequently
expose security flaws due to race conditions. The commonly
accepted remedy to this problem is to envelope related data-
base operations in transactions. Unfortunately, sole trust in
transactions to isolate competing sets of database interac-
tions is often misplaced. While the precise isolation prop-
erties of transactions depend on the configuration of the
database management system (DBMS), the default configu-
ration of common DBMS exposes transactions to anomalies
that render their protection worthless.We give a comprehen-
sive overview on the behavior of common DBMSes with
respect to transactions and show that their default settings
are insufficient to provide comprehensive protection. Fur-
thermore we conduct a preliminary study on how commonly
transactions and isolation configuration adjustments are de-
ployed across 4.222 open source PHP applications that use
SQL, finding 2.789 transactions and only 418 isolation adjust-
ments indicators. Our findings indicate that race conditions
are an underappreciated vulnerability class and adjustments
are too rare to for transactions to reliably provide sufficient
protection.

CCS Concepts: • Security and privacy→Web applica-
tion security; • Information systems→ Data locking;
Structured Query Language.

Keywords: DBMS, Race Condition, Transaction, Web Appli-
cation, Isolation Level
ACM Reference Format:
Simon Koch, Malte Wessels, David Klein, and Martin Johns. 2023.
Poster: The Risk of Insufficient Isolation of Database Transactions
in Web Applications. In Proceedings of the 2023 ACM SIGSAC Con-
ference on Computer and Communications Security (CCS ’23), No-
vember 26–30, 2023, Copenhagen, Denmark. ACM, New York, NY,
USA, 3 pages. https://doi.org/10.1145/3576915.3624394
∗Both authors contributed equally to this research.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
CCS ’23, November 26–30, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0050-7/23/11.
https://doi.org/10.1145/3576915.3624394

1 Introduction
Web applications are used to realize ever more complex use
cases. To do so, they typically keep persistent state, most
commonly achieved via a relational database management
system (DBMS).

The executionmodel ofWebApplications ismulti-threaded
by nature: at any moment in time a multitude of users may
interact with the application concurrently. Thus, anomalies
due to interleaving database queries, better known as race
conditions, are a problem. Meanwhile reasoning about in-
terleaving is difficult, especially as Web Applications are
commonly tested with low user load and without interleav-
ing in mind. Race conditions in Web Applications are known
to cause financial loss if successfully exploited and have been
studied by both static [2, 8] and dynamic [5–7] analysis re-
search. The best known defense against race condition are
transactions. The PHP documentation describes the effect of
a transaction as “any work carried out in a transaction, even
if it is carried out in stages, is guaranteed to be applied to the
database safely, and without interference from other connec-
tions, when it is committed.” [1]. Consequently, all queries
wrapped in a transaction can be assumed to be protected
from race conditions. This assumption is wrong!
The reality of modern DBMSes is more nuanced: Naive

approaches to achieve strong isolation properties, namely
global locks, introduce punishing performance bottlenecks,
undesirable for latency sensitive applications. For this rea-
son, modern DBMSes provide more finely grained methods,
allowing to balance between isolation properties and per-
formance: Isolation Levels. An Isolation Level, configurable
by the developer, defines the allowed parallelism of trans-
actions. The ANSI SQL standard defines multiple Isolation
Levels. The strongest is Serializable, requiring that trans-
actions executed concurrently shall behave the same as if
they were executed consecutively. As such it is functionally
similar to a global lock on the affected tables. Trivially, Seri-
alizable ensures that no race conditions can take place and is
defined as the default Isolation Level by the SQL standard [4].
However, all modern DBMS that we tested deviate from

this requirement, leaving Web Applications susceptible to
race conditions even when diligently using transactions.

2 Database Based Race Conditions
Interaction with relational databases, i.e., storing and re-

trieving data, is typically done using SQL queries. There is

https://doi.org/10.1145/3576915.3624394
https://doi.org/10.1145/3576915.3624394


CCS ’23, November 26–30, 2023, Copenhagen, Denmark Koch and Wessels et al.

SELECT va lue FROM coupons WHERE i d = # 1 ;

UPDATE coupons SET va lue = 0 WHERE i d = # 1 ;

Figure 1. Two consecutive, interdependent queries exposed
to a race condition if #1 references the same id.

no limit on the amount of concurrent interactions a database
can handle and multiple interactions may touch the same
entities at the same time. It is the responsibility of the DBMS
to ensure that no interaction leaves the stored data unread-
able for future interactions. However, logical coherence of
the stored data is usually ensured via the application logic
accessing the database.
Figure 1 shows an example of two queries operating on

the same entity. Such query pairs in applications are can-
didates for race conditions. We base our example on a web
shop that uses coupons for price reductions of purchases.
The first query reads the 𝑣𝑎𝑙𝑢𝑒 column from table 𝑐𝑜𝑢𝑝𝑜𝑛𝑠
for the entity, e.g. with the 𝑖𝑑 1. The underlying code uses
this first query to determine how much remaining value a
coupon has. This remaining value is then applied and sub-
sequently removed from the stored coupon. In our example
the coupon has been used up. Consequently, the writing
query sets the value for the coupon to 0. Let us assume two
different users trying to apply the full coupon to their pur-
chase simultaneously. The execution order of those two pairs
of queries (one pair per user) becomes vitally important. If
one pair executes before the second, the remaining coupon
value drops to zero and the second user does not get any
price reduction. However, if, for both executions, the reading
query is executed before the writing query, both checkout
processes assume that the coupon still has value. Thus, both
customers can claim a discount on the product leading to
doubling the overall price reduction, causing a monetary
loss for the shop owner. This anomalous behavior is called
a Lost Update but there is more than one type of such race
condition that can happen. Database literature defines six
major ones [3, 4]: Dirty Write, Dirty Read, Non Repeatable
Read, Lost Update, Write Skew, and Phantom.

SQL DBMS are expected to adhere to the ACID properties
and should consequently be able to prevent such race condi-
tions when used properly. The ACID properties guarantee
that a transaction, i.e., an interaction with the database, is
either executed completely or not at all (Atomicity), cannot
leave the database in an inconsistent state (Consistency),
concurrent transactions are isolated from each (Isolation),
and finally that changes by finished transactions are stored
durably (Durability). A transaction in this context can span
any number of queries and is delimited by special start and
end markers.
Based on this definition a programmer should be able to

trust the DBMS to ensure, that, if multiple transactions ac-
cess the same entities timing based difference are impossible,

as transactions are supposed to be isolated. This assumption,
however, is wrong as DBMS provide multiple different isola-
tion levels each with its own caveats concerning isolation.

The ANSI specification defines four isolation levels (Read
Uncommitted, Read Committed, Repeatable Read and Seri-
alizable) and Berenson et al. describe two further isolation
levels (Cursor Stability and Snapshot Isolation) [3]. Read Un-
committed, Read Committed, Cursor Stability, and Repeat-
able Read are defined by the race conditions they prevent.
Snapshot Isolation is a technique where a transaction works
on a snapshot of the data, possibly requiring merging back
into the database. Only Serializable, the strongest Isolation
Level, consistently provides the protection expected [3].

3 DBMS Isolation Levels and Their Usage
We discussed Isolation Levels and how the lower levels may
allow for the manifestation of race condition even if transac-
tions are used. In this section, we examine to which degree
this theoretical problemmanifests itself in running PHP code.
For this purpose, we design a specific test suite to test for the
race condition variants. This way, we evaluate the isolation
levels of different popular database management systems
and their effects on race conditions using the PHP provided
main APIs PDO and mysqli.

Each individual test case is designed to cause a specific race
condition. In particular, we test for race conditions based on
Dirty Reads, Non Repeatable Reads, Lost Updates, and Phan-
tom Reads. Additionally, we test for two custom cases based
on PhantomReads, that we discovered during our initial man-
ual discovery phase: Phantom Append and Phantom Delete,
a programming pattern where a set is first counted and then
appended to or deleted from. When applicable, we also test
the same pattern with a special 𝑆𝐸𝐿𝐸𝐶𝑇 ... 𝐹𝑂𝑅 𝑈𝑃𝐷𝐴𝑇𝐸

clause that is supposed to prevent race conditions.Finally,
we test the behavior of seemingly “nested” transaction, i.e.,
what happens if the application begins a new transaction
while another one is currently active. The SQL standard for-
bids such nesting of transactions. Finally, we also check for
differences between options of controlling transactions: Us-
ing the “raw” APIs to pass a query starting a transaction
as string, e.g., BEGIN TRANSACTION vs using API functions
to control transactions, such as mysqli_begin and PDO’s
function PDO::beginTransaction.

Our testing setup consists of one main script automatically
requesting other worker scripts concurrently. Generally, ev-
ery test first resets the SQL table we are testing against. Then
it requests two hosted scripts at the same time. These scripts
take the role of concurrent requests and are designed to trig-
ger the race condition. The first step of every worker script
is to optionally begin a new transaction either via API or
raw SQL. For every failed query (including those controlling
transactions) we check if a serialization error occurred as this
also signals a prevented race condition. We evaluated our



Poster: The Risk of Insufficient Isolation of Database Transactions in Web Applications CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Table 1. Which non serializable patterns are prevented at given isolation levels

MySQL PostgreSQL MSSQL SQLite

Isolation Level RU RC RR† S RC† SI S RU RC† RR SI S RU SI S†

Dirty Read ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Non Repeatable Read ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓
Phantom Read ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓
Lost Update ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓
Lost Update w/ FOR UPDATE ✓ ✓ ✓ ✓ ✓ ✓ ✓ - - - - - - - -
Phantom Append ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓
Phantom Append w/ FOR UPDATE ✓ ✓ ✓ ✓ ✗ ✗ ✓ - - - - - - - -
Phantom Delete ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓

RU: Read Uncommitted, RC: Read Committed, RR: Repeatable Read, SI: Snapshot Isolation, S: Serializable, †: Default

testbed against multiple popular DBMSs. We installed PHP
7.4 as well as MySQL, PostgreSQL, SQLite, Microsoft SQL
Server (MSSQL) in Ubuntu 18.04 Docker containers and ran
the aforementioned proof of concept scripts to test whether
race conditions occur at a given isolation level.

Results: MySQL doesn’t stop Lost Updates from happen-
ing in Repeatable Read, but is still adhering to the original
SQL standard which defined Repeatable Read by the Anom-
alies it prevents: Dirty Read, Non Repeatable Read and Phan-
tom Read. Lost Update was only introduced by [3] after the
standard was formalized. The FOR UPDATE clause stopped
any anomalies from occurring. For PostgreSQL the FOR UP-
DATE clause only stopped Lost Update from occurring, but
not Phantom Append. MSSQL stopped Lost Update from
occurring in Repeatable Read, which is stronger than the
standard requires. MSSQL’s Snapshot Isolation disallowed
Phantoms but Phantom Append still occurred which makes
sense as Snapshot Isolation makes a snapshot of the database
state before the transaction starts. We discovered different
behavior for MySQL when used via the mysqli or the PDO
API. The mysqli API implicitly commits the first transaction
on a second begin, as documented in its official documen-
tation.PDO on the other hand throws an Exception if a new
transaction began while another one is still running, as docu-
mented in the documentationThe ANSI SQL standard states
“If a 〈start transaction statement〉 statement is executedwhen
an SQL-transaction is currently active, then an exception
condition is raised”[4, p. 698], i.e., the PDO API adheres closer
to the ANSI standard thanMySQL itself. MySQL, PostgreSQL,
and MSSQL all implicitly commit the first transaction while
using “raw” SQL to control transactions and do not success-
fully commit either transaction when PDO’s transaction con-
trol is used. This difference in behavior makes it impossible
to design consistent high-level database interaction across
different backend DBMS as soon as nested transactions are
used.

4 Were to Go From Here?
It is obvious that the relationship between race conditions
and Isolation Levels is complex, indicating a knowledge gap
with significant security risk. We confirmed this suspicion by
conducting a preliminary study on 30.868 open source PHP

projects by searching for keywords indicating SQL or trans-
action usage and Isolation Level adjustments. Only 4.222 and
2.789 projects contained keywords indicating SQL or trans-
action usage, respectively. An even smaller number, only
418, used isolation level adjustments related keywords.Based
on those numbers we suspect a large amount of Web Appli-
cations to contain race conditions and even if they follow
best practices, i.e., use transactions, to still be affected. Con-
sequently, race conditions are here to stay as a vulnerability
class. We want to advocate towards developing a method-
ology that is able to extract transactions and identify race
conditions on a large scale.

Acknowledgements
This research was funded by the European Union’s Hori-
zon 2020 grant agreement No 101019206 and the Deutsche
Forschungsgemeinschaft (DFG, German Research Founda-
tion) under Germany’s Excellence Strategy - EXC 2092 CASA
- grant agreement No 390781972.

References
[1] 2023. Transactions and auto-commit. Retrieved 2023-08-18 from https:

//www.php.net/manual/en/pdo.transactions.php
[2] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M. Hellerstein, and I.

Stoica. 2015. Feral Concurrency Control: An Empirical Investigation
of Modern Application Integrity. In ACM International Conference on
Management of Data.

[3] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil.
1995. A Critique of ANSI SQL Isolation Levels. SIGMOD Rec. (1995).

[4] ISO/IEC JTC 1/SC 21/WG 3 1994. (ISO-ANSI Working Draft) Database
Language SQL (SQL3). Standard. International Organization for Stan-
dardization, Geneva, CH.

[5] S. Koch, T. Sauer, G. Pellegrino, and M. Johns. 2020. Raccoon: Verifying
Race Conditions in Web Applications. In ACM Symposium on Applied
Computing.

[6] R. Paleari, D. Marrone, D. Bruschi, and M. Monga. 2008. On Race Vulner-
abilities in Web Applications. In International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment.

[7] T. Warszawski and P. Bailis. 2017. ACIDRain: Concurrency-Related
Attacks on Database-Backed Web Applications. In ACM International
Conference on Management of Data.

[8] Y. Zheng and X. Zhang. 2012. Static Detection of Resource Contention
Problems in Server-side Scripts. In International Conference on Software
Engineering.

https://www.php.net/manual/en/pdo.transactions.php
https://www.php.net/manual/en/pdo.transactions.php

	Abstract
	1 Introduction
	2 Database Based Race Conditions
	3 DBMS Isolation Levels and Their Usage
	4 Were to Go From Here?
	References

