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Abstract—Are GitHub stars a good surrogate metric to assess
the importance of open-source code? While security research
frequently uses them as a proxy for importance, the reliability
of this relationship has not been studied yet. Furthermore, its
relationship to download numbers provided by code registries
– another commonly used metric – has yet to be ascertained.
We address this research gap by analyzing the correlation
between both GitHub stars and download numbers as well
as their correlation with detected deployments across websites.
Our data set consists of 925 978 data points across three web
programming languages: PHP, Ruby, and JavaScript. We assess
deployment across websites using 58 hand-crafted fingerprints
for JavaScript libraries. Our results reveal a weak relationship
between GitHub Stars and download numbers ranging from a
correlation of 0.47 for PHP down to 0.14 for JavaScript, as well
as a high amount of low star and high download projects for
PHP and Ruby and an opposite pattern for JavaScript with a
noticeably higher count of high star and apparently low download
libraries. Concerning the relationship for detected deployments,
we discovered a correlation of 0.61 and 0.63 with stars and
downloads, respectively. Our results indicate that both downloads
and stars pose a moderately strong indicator of the importance
of client-side deployed JavaScript libraries.

I. INTRODUCTION

When doing web security research, one persistent question
is how to select applications to test and how to assess
their importance, commonly implying a large developer base
depending on the code. While for large-scale web studies, the
community has converged on using the Tranco list [1], no
such rankings exist for code analysis studies. Past research has
used a wide range of different importance metrics to select
suitable targets, e.g., GitHub stars and forks [2–8], download
counts [5, 6, 9–12] – sometimes interchangeably – or even avail-
ability on Bitnami [13, 14] a provider of packaged, ready-to-
deploy applications. Nevertheless, the security community has
converged on using GitHub stars as the preferred metric; thus,
researchers pick applications or libraries that maximize this
metric. But so far, there has been no systematic evaluation of
how representative GitHub stars are regarding real-world usage.

Different language communities might use GitHub stars
differently, developers starring projects because they seem

interesting without ever using them, single projects being
deployed various times, and the possibility to game the system
are sources for bias to creep in. Furthermore, dependency
chains complicate the picture. While a developer directly using
a dependency might recognize the project by starring it on
GitHub, it is unlikely that they are even aware of what projects
they are transitively depending on, i.e., what dependencies
their dependencies have. The second popular choice is to
refer to download numbers provided by code registries to
assess how often a project has been deployed. But this is not
more reliable, as not every download necessarily represents a
new usage instance. Continuous integration services frequently
build software, i.e., fetch their dependencies, thus increasing
the download count without ever exposing the software to
human users.

The only dead sure way to assess the significance of a given
project would be to analyze each and every existing machine
and count the deployed instances, an obviously infeasible task.
We do the next best option by assessing the deployment count
of client-side code across publicly available web instances. As
this is a cumbersome and lengthy process that is unfeasible to
perform independently by every security researcher, we then
correlate to the star count and the download numbers to assess
which meta-metric is better suited. Finally, we also assess
the correlation between download counts and GitHub stars
to assess the relationship between the two meta-metrics. We
conduct our metadata study for three popular web languages:
PHP, Ruby, and JavaScript. Then, we assess the deployment
count for client-side JavaScript libraries. Our results show a
weak relationship between GitHub stars and download counts
across the 925 978 projects included in our data set with our
deployment assessment for 58 JavaScript counter-intuitively
indicating that either is a moderately strong indicator for
deployments. However, we also observe diverging patterns
between PHP, Ruby, and JavaScript, indicating that JavaScript
presents a special case and a split between server-side code
(i.e., node modules) and client-side code has to be made.

To summarize, our contributions are the following:
• We develop a software framework to correlate the impor-

tance metrics of GitHub Stars and registry download count
and how they measure up against real-world deployments.

• We collect a data set of 925 978 projects across the
three popular web languages PHP, Ruby, and JavaScript,
connecting download numbers with GitHub stars

• We assess real-world deployments of 58 client-side
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JavaScript libraries across the top 100 000 Tranco websites
We will open source the code for the fingerprinter, the analysis
framework, and artifacts upon publication.

Following, we first provide a short background on project
importance metrics (II) followed by our methodology (III) and
results (IV). We subsequently discuss the results (V), followed
by an overview of the related work (VI). Finally, we summarize
our key contributions and results in the conclusion (VII).

II. BACKGROUND

Sub-fields of the security community deal with security and
privacy assessment of program code. Examples are fuzzing,
static and dynamic analysis, as well as enforcement techniques.
To evaluate such work, the authors showcase their ability to
detect security or privacy issues in real software. Here, the
question arises of how to select suitable targets to demonstrate
the efficacy of the proposed approach. While the web security
community has standardized on using the Tranco list [1] as a
data set to analyze popular websites, such a consensus is (still)
lacking in other areas of security research.

One proxy for a project’s importance is called stars on
GitHub. Despite the fundamental issue that this only captures
projects hosted on GitHub, it also abuses an unrelated metric.
The official documentation describes stars as a way “to keep
track of projects you find interesting and discover related
content in your news feed” [15]. Whether considering a
project as interesting leads to usage, i.e., makes a project
an important research target, is an open question. Similarly,
ample opportunities exist to game the star-based system [16].

Another proxy for the importance of a project is the
download count provided by the corresponding registry. A code
registry is a public hoster of code such as rubygems [17] for
Ruby or npm [18] for JavaScript usually combined with a
dependency manager that manages dependencies of the current
project of a simple list or a more complex configuration file.
This central management of dependencies allows the hoster to
count the number of downloads a given project enjoys over its
lifetime or any other timespan, providing a possibly valuable
cache of important metadata. However, this metric might be
skewed as the registry cannot ascertain whether a download
relates to an update, test deployment, or a new deployment,
and thus, download numbers are likely inflated when assessing
the number of unique instances being deployed.

III. TESTING GITHUB STARS AS A METRIC

We presented the common hypothesis that GitHub stars or
download numbers are correlated to the usage, i.e., importance,
of projects. In this section, we present our methodology and
corresponding implementation to study this hypothesis.

A. Hypotheses and Study Pre-Registration

While download counts are available for almost every
package repository (e.g., Ruby or npm), real-world usage is
more difficult to infer. Relying on self-reporting might work
for large projects, e.g., big web frameworks such as Angular,
but such user success stories are prone to become outdated

and paint an incomplete picture at best. Consequently, we
need to derive usage counts from the web at large. For this,
fingerprinting is the most promising approach. As we also need
comparable languages, we choose three languages enjoying
large deployment in the web context: JavaScript, Ruby, and
PHP. Given the complexities of fingerprinting server-side code,
we only assess the deployment for JavaScript projects.

Based on our language and meta-metric selection, we
pose five distinct hypotheses we want to test: 1) The total
download count correlates with the GitHub stars for PHP
projects; 2) The total download count correlates with the
GitHub stars for Ruby projects; 3) The total download count
correlates with the GitHub stars for JavaScript projects; 4) The
detected deployment count of JavaScript projects correlates
with its GitHub stars; and 5) The detected deployment count
of JavaScript projects correlates with its total download count.
We registered our study and hypothesis at the Open Science
Framework hosted by the Center for Open Science [19] prior
to completing our deployment assessment. The registration
provides a timestamp and is publicly available [20]. To
account for the issue of testing multiple hypotheses, we apply
the Bonferroni correction [21] and adjust our threshold for
significance down to 0.01.

B. Meta Metrics: GitHub Stars and Total Downloads

We selected two meta metrics to compare against each other
and for JavaScript against our assessment of deployments:
GitHub Stars and Total Downloads. To gain access to the
total download numbers as well as the corresponding GitHub
repositories, we leveraged their package manager APIs available
at rubygems.org, packagist.org, and npmjs.com. Both Ruby and
PHP allow for a complete iteration across all registered projects
providing us with the download numbers and corresponding
GitHub repository. As directly accessing the list of all npm
registered projects is not possible, we base our metadata
generation for JavaScript on the latest data set gathered by
Pinckney et al. [22] downloaded 2023-12-15. This data set
provides us with a list of available npm projects we can then
use to obtain download data and GitHub repository from npmjs.
We complemented our data with the stars of the corresponding
repositories by using the GitHub API. We set our cutoff point
for projects at 1000 total downloads to reduce the noise in our
data set.

C. Deployment Metric: Fingerprinting the Web

Deployed server-side code is opaque as the browser only
receives its computed results but client-side code is executed
in the visitor’s browser. Consequently, with a browser we
have full access to all application code that makes up the
dynamic behavior of the frontend of each website, i.e., the
client-side JavaScript. This should, at least in theory, allow us to
derive all used client-side libraries via detecting representative
patterns, e.g., error messages or specific file names. The real-
world situation, however, is more involved, as websites employ
bundlers and minifiers to save on bandwidth and obfuscate
their application’s code. Such minifiers also employ techniques
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1 // Does any JavaScript file match?
2 content.match(/Alpine Expression Error:/g)
3

4 // Does any retrieved URL match?
5 url.match(/alpinejs.*(\.min)?\.js/g
6

7 // Does this expression return, i.e., not throw?
8 Alpine.version.trim()

Fig. 1: Fingerprinting strategies exemplified for Alpine.js

like tree shaking [23] to purge code not actually used inside
the web application. Consequently, attempting to recognize
used JavaScript libraries in large websites is an error-prone
process. Nevertheless, retrieving usage statistics via library
fingerprinting gives a useful approximation of deployments.

To this end, we started from retire.js [24], a fingerprinting
library aimed at detecting outdated libraries with known security
vulnerabilities. Generally, the fingerprinter visits a website and
records all incoming responses containing HTML or JavaScript.
It has three different ways to detect the presence of a library on
a website: 1) matching retrieved URLs against known patterns,
2) matching the response’s content against known code patterns,
and 3) dynamic evaluation of library-specific code. We provide
an example for each of the three strategies in Figure 1.

We extended the initial 26 libraries with handwritten fin-
gerprinting code for a total of 58 JavaScript libraries. Out of
the initial fingerprints, we were only able to take over 13 as
the remaining were either not contained in our GitHub star or
downloads data set or posed a high risk of biasing our results as
12 out of the 26 fingerprints were jQuery related; we kept only
4 of them. Furthermore we modified the existing fingerprints
to be version agnostic. We base our selection of additional
fingerprints on download numbers mirroring the distribution of
our JavaScript data set via sampling. Necessarily, we restricted
our selection to recognizable and client-side JavaScript libraries.
That is, a selected library must both be deployable on a website
and also contain unique features, such as descriptive error
messages. We selected code aspects for fingerprinting likely
to survive the discussed fingerprinting impediments and aimed
for several detection mechanisms per library, taking care that
the selected ones do not cause false positives.

D. Calculating the Correlation and Significance

As we cannot expect to encounter a linear correlation for
the different hypotheses we want to test we chose a correlation
metric capable of dealing with non-linear correlations [25]: Dis-
tance Correlation. Distance Correlation is a metric introduced
by Székely et al. [26] and can calculate non-linear correlations.
Its result domain is in the 0. . . 1 range. To calculate the
significance of our calculated correlation, we use the same
approach as proposed by Székely et al. [26] by randomly
reallocating each observation from our first set (e.g., GitHub
Stars) to a different observation from our second set (e.g.,
weekly downloads), without replacement, and recalculating the
distance correlation. The ratio of resulting correlations higher
than our initially observed one is the p-value of our calculated

TABLE I: Calculated metadata averages and σ for PHP, Ruby,
and JavaScript libraries

Language #Libs Avg. � σ avg ⋆ σ

PHP 90 882 1 066 904.14 16 465 936.64 87.64 1235.17

Ruby 108 409 1 308 098.38 18 151 830.41 148.85 1678.77

JavaScript 726 687 10 176 316.43 224 280 131.34 1398.81 8054.25

correlation, i.e., a high value indicates that we cannot rely on
the correlation value.

IV. RESULTS

We explained our acquisition of the meta metrics GitHub
Stars and Total Downloads for JavaScript, Ruby, and PHP,
as well as our approach to detect deployments of JavaScript
libraries on the web. In this Section, we present the results of
applying our methodology.

A. GitHub Stars and Total Downloads

Our initial data set consists of 90 882, 174 197, and 1 178 942
libraries for PHP, Ruby, and JavaScript with at least 1000 total
downloads respectively, according to their registries. As not
all of those libraries also have a publicly available GitHub
repository, we have to reduce the final numbers of libraries
down to 90 882, 108 409, and 726 687. We list the calculated
averages and corresponding standard deviations in Table I.

The standard deviations reveal a large spread of total
download numbers and stars as either deviation is larger than
the corresponding average. This observation gains credence
by looking at the median number of downloads, e.g., for
JavaScript. According to our data set, the median number
of total downloads is 4318, indicating that a large portion
of libraries have a download count close to our cut-off of
1000 total downloads. This is in stark contrast to the maximum
download count of 31 546 267 200 explaining the large standard
deviation. The stars count exhibits a similar pattern with a
median of 3 and a max of 216 506. Those observations also
hold for PHP with the median values of downloads and stars
of 7242 and 2 compared to the maximum of 750 381 350
and 166 157. In contrast, Ruby’s median download number
of 10 216 is noticeably higher than for the other two languages
with a comparable maximum of 216 565. But this difference
only holds for downloads as the median of stars is as low as
PHP and JavaScript with 2 and the max number of 216 565 is
within a rounding error to JavaScript.

B. Detected Deployments

To assess whether downloads or GitHub stars correlate with
real-world deployments, we ran our fingerprinter on the landing
pages of the 100 000 most popular websites, according to the
Tranco ranking, to assess real-world usages [27]. In total, our
crawler successfully visited and collected fingerprints from
70.8% of these websites. We summarize the number of hits
reported by our fingerprinter in Table IV.
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(a) PHP (corr = 0.47, ρ = 0.00 < 0.01) (b) Ruby (corr = 0.33, ρ = 0.00 < 0.01) (c) JS (corr = 0.14, ρ = 0.00 < 0.01)

(d) [ (corr = 0.52, ρ = 0.00 < 0.01) (e) [ (corr = 0.61, ρ = 0.00 < 0.01) (f) [ (corr = 0.63, ρ = 0.00 < 0.01)

Fig. 2: Scatter plots of the relation between stars and downloads (a-c) as well as their relation with detected deployments
separately plotted for our selection of fingerprinted libraries (d-f). Mind the logarithmic scales.

C. Correlations

To calculate the distance correlation of our data sets, we used
the Python library statsmodels version 0.14.1. Calculating
the distance correlation is resource-intensive, so we only used
a subset of all available data points. We sampled 10 000 data
points from our data sets, meaning that for our metadata, we
only use a subset of all available data points, while for the
fingerprints, we use the whole set of 58. After calculating the
correlation, we performed 10 000 random reallocations of our
chosen data points to calculate the significance value. We list
the results in Table II.

Our collected metadata for JavaScript, Ruby, and PHP
only exhibit a weak correlation with a high significance,
contradicting a proper relationship between download numbers
and GitHub stars, with the weakest correlation for JavaScript
and the strongest for PHP. The correlation for PHP is about
three times as high as for JavaScript. Concerning the correlation
between detected deployments and the metadata, we found a
moderately strong relationship around 0.63 for either with a
high significance.

TABLE II: Calculated correlations and significance values based
on sample of size 10 000 and 10 000 random reallocations.

Lang. corr(⋆, �) corr(⋆, [) corr(�, [)

JS 0.14 (ρ=0.00) 0.61 (ρ=0.00) 0.63 (ρ=0.00)
Ruby 0.33 (ρ=0.00) N/A N/A
PHP 0.47 (ρ=0.00) N/A N/A

V. DISCUSSION

The presented results show an overall weak correlation
between stars and downloads across languages and a moderate
correlation for deployments. To contextualize these results,
we first discuss our observations concerning the reliability of
the connection between a registry project and its presumed
GitHub code repository (V-A), followed by a deep dive into the
apparent disconnect between download numbers and GitHub
stars (V-B), and the implications of our observed correlations
(V-C). Finally, we summarize our key findings and provide an
outlook on how to proceed based on our observations (V-E).

A. Untrustworthy Connection Between Project and Repository

We encountered 1125 (1.24%), 3473 (3.20%), and
33 586 (4.62%) projects that list the same GitHub repository
with an average of 2.09, 3.21, and 5.75 projects per repository
across PHP, Ruby, and JavaScript, respectively. Depending on
where a researcher sources the code, this has implications on
the validity of stars or downloads as a reliable metric. If the
code is sourced from GitHub, then the star count fits the code,
but the download count is shared between the two projects
referencing the repository, distributing the count across either
project. However, if the code is sourced from the registry, then
both the download numbers and the star count are unreliable.
The download count is now split between these libraries, while
the star count is inflated as multiple projects guide developers
to the same GitHub repository. Consequently, to use either
number as an importance metric, researchers need to check
and discuss whether multiple projects are referencing the same
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TABLE III: Amount projects residing in the four different
quadrants of our scatter plot (Figure 2). We kept the logarithmic
scale while calculating the quadrants.

Lang. I II III IV

JS 25 745 (3.5%) 50 333 (6.9%) 604 227 (83.2%) 46 382 (6.4%)
Ruby 2613 (2.4%) 22 702 (20.9%) 81 184 (74.9%) 1910 (1.8%)
PHP 2131 (2.3%) 23 044 (25.4%) 65 349 (71.9%) 358 (0.4%)

repository, a daunting task. The issue of the reliability of the
referenced GitHub repository and its star count also manifests
beyond shared references. We encountered instances where the
referenced repository did not match the expected repository.
Take, for example, highcharts a charting package for JavaScript
with 165 358 617 downloads but apparently only 203 stars.
A closer inspection shows that the npm package references
highcharts − dist [28] a self-described “shim repo” by the
same owner of the actual repository for highcharts [29]. The
proper repository has a 50 times higher star count of 11 683
as of 2024-01-05. Another striking example would be the
repository of react [30] with 216 885 stars as of 2024-01-05
referenced by the ruby repository react-source-fb-cloned [31]
with only 1953 downloads. As the original react repository
does not contain any Ruby code, we are at a loss as to why
it is provided as the reference repository for this Ruby gem.
While either example is only anecdotal evidence and follow-up
research has to conduct a more in-depth analysis between the
connection of the code provided by the project registry and
the referenced GitHub repository, they demonstrate that star
counts for a given registry project cannot be taken at face value.
Therefore, researchers must investigate and sanity-check values
before referencing.

B. Unreasonable Disconnect Between Downloads and Stars

When counting the projects residing in the four different
quadrants of our scatter plots (Figure 2), we observe a large
aggregation of projects in the third, i.e., lower left, quadrant
and a smaller amount of projects in the first, i.e., upper
right, quadrant consistently across all languages. This fits a
distribution where few have a lot, and most have nothing.
However, we can observe a pattern opposing such a distribution
when assessing the remaining quadrants. Both Ruby and PHP
show a large aggregation of projects in the second quadrant with
20.9% and 25.4% of projects, respectively. This means that a
non-trivial number of projects are downloaded frequently but do
not receive much attention in terms of stars. We assume this is
due to smaller utility projects, i.e., projects use and depend on
multiple small projects without the developer acknowledging
the usage via stars. Finally, only a minuscule amount of
projects reside in the fourth quadrant, with only 1.8% and
0.4% for PHP and Ruby, respectively. This again matches our
presumed distribution. JavaScript, however, breaks with this
pattern and has a similar amount of projects in both the second
and the fourth quadrant with 6.9% and 6.4%, respectively. The
second quadrant is noticeably lower than for Ruby or PHP,

indicating that either projects that are being used a lot are also
recognized more in terms of stars or that there are fewer overall
utility projects. As the second explanation directly contradicts
past research [32], we believe the first to be true, indicating a
different starring culture in JavaScript. However, not only the
second but also the fourth quadrant poses an anomaly compared
to PHP and Ruby, as the proportion of projects residing here
is four and sixteen times higher. This indicates that a non-
negligible share of JavaScript projects is renowned but rarely
downloaded from npm. We attribute this anomaly to the area
of application for the languages: While PHP and Ruby are
solely server-side languages, JavaScript is not. For a server-
side language, any module or code used has to be included in
the project, and it is reasonable to assume that this happens
via the corresponding package manager. Each installation, i.e.,
usage, is then reflected in the download numbers of the registry.
Not using a package manager would come with an additional
overhead as the code has to be manually downloaded and
included in the project, with subsequent updates requiring the
same steps again. This usage pattern does not necessarily hold
for JavaScript, as websites wanting to use a JavaScript library
can either include it directly or reference a hosting URL. The
hosting URL can then be from a content delivery network
(CDN), the own server, or another source code provider. None
of these options are reflected in the download numbers of the
package manager. An overview of the number of projects in
the different quadrants is given in Table III.

C. Correlations

The correlation between stars and downloads is low through-
out with 0.47, 0.33, and 0.14 for PHP, Ruby, and JavaScript,
respectively. Consequently, they are only loosely connected
and cannot be used interchangeably. However, whether this
has to be a uniform decision across all languages and for all
cases is not obvious. When visually inspecting the scatter
plot for PHP provided in Figure 2, the connection between
downloads and stars tightens when moving to the larger values.
The same holds, even though not as apparent, for Ruby. Thus,
either language still has a low connection between download
and stars across the lower values. Still, the connection gets
stronger the larger the values become, providing an argument
that researchers can use either meta-metric interchangeably to
represent the significance of a project as long as the values
are sufficiently large. JavaScript does not show such behavior,
leaving the question of which value – downloads or stars – to
use as an importance metric.

Our deployment assessment suggests that both metrics
are moderately strong predictors for deployments. This is
highly non-intuitive given that JavaScript exhibited the lowest
correlation between download numbers and stars with only
0.14. However, it is important to remember that correlations are
not necessarily transitive in nature, and thus, a high pairwise
correlation between two out of the three pairs is not by itself
a contradiction. An explanation for the high correlations could
be that we introduced a selection bias into our selection of
JavaScript projects to fingerprint. We had to select libraries that
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can be deployed on the client side and, thus, excluded server-
side-only code such as node modules. It is entirely possible
that the JavaScript community consists of two sub-communities
– web and server – that are different in their starring culture.
Assessing this hypothesis and searching for other explanations
are tasks of future work.

D. Limitations

We only look at projects with a download number greater
1000 to reduce noise in our data set. This does introduce a bias
towards more known projects and, thus, needs to be kept in
mind when assessing the reported observations. When assessing
the fingerprinting results, it is important to understand that we
1) only looked on the client side, 2) JavaScript projects, and
3) those that have some form of identifiable code pattern. This
impacts the generalizability of the results as neither PHP nor
Ruby support client-side deployment, and by selecting libraries
with multiple and unique code patterns, we are necessarily
biased towards larger and more complex projects, introducing
a bias.

E. Lessons Learned and Outlook

Our first lesson learned is that there is only a weak
relationship between download numbers and GitHub Stars
proscribing an interchangeable use of either metric. Our
second lesson learned indicates that a large share of projects
is downloaded a lot but not appreciated via GitHub stars,
indicating that download numbers are a better indicator of
significance than stars. However, the decision of which metric
to use is not necessarily uniform across languages as our third
lesson learned is that we can observe distribution differences
between Ruby, PHP, and JavaScript, with Ruby and PHP
displaying a large share of downloaded and not appreciated
projects but JavaScript does not. Instead, JavaScript has a
comparably large amount of projects being appreciated but
apparently not downloaded. Our final and fourth lesson learned
is that when it comes to deployments, both downloads or
GitHub stars are a moderately strong predictor and can thus, at
least for client-side JavaScript, be used to assess importance.

Based on our observations, we recommend reporting both
numbers – downloads and GitHub Stars – to provide a surrogate
metric of the popularity an application enjoys. This allows the
community to contextualize the impact of research on less
appreciated but frequently used libraries as well as on libraries
that are widely renown but not downloaded as much via their
registries. Furthermore, researchers need to discuss where they
obtained the source code as well as presented metrics to account
for duplicate use of repositories or a disconnect between the
used GitHub repository and the repository listed in the registry.

VI. RELATED WORK

The selection of targets to test is a widespread question
in security research. Consequently, different subfields have
come up with their own solutions or suggestions. The initial
metric to select websites to analyze was the Alexa list, provided
by Amazon [33] and discontinued in 2022 and superceeded

by the Tranco list suggested by Le Pochat et al. [1]. The
Tranco list solves issues such as possible manipulation of the
ranking of specific websites Fuzzing research has standardized
on a set of synthetic benchmarks, such as LAVA [34] and
an otherwise uniform set of targets [35]. Past research on
project popularity involving registries and GitHub is varied.
Borges et al. [36] conducted a study on 2,279 popular GitHub
repositories, analyzing characteristics such as age, number
of commits, number of contributors, and number of forks
across multiple languages. However, they already assume
that stars indicate popularity as they select the repositories
based on star count. Similarly, Aggarwal et al. [37] assess
the connection between documentation changes and popularity,
with popularity being defined as the sum of stars, forks, and
pulls. Syed et al. [38] propose a different measure for popularity
– the sum of watchers and pull requests – and study the
relationship between it and the amount of code changes. Finally,
Zerouali et al. [39] conducted a large-scale analysis in 2018
on 175 774 npm repositories assessing different correlations
between metadata. Their results show a low correlation between
stars and downloads (0.33) and are somewhat higher but
in line with ours (0.14).This past research shows that the
options for target selection are rich and that a large variety of
assumptions concerning the meaning of popularity have been
made. However, an assessment of the connection between the
meta metrics for popularity and deployments is still a research
gap.

VII. CONCLUSION

We presented our correlation analysis between the impor-
tance surrogate metrics GitHub Stars and download numbers
across 925 978 projects for the web languages PHP, Ruby,
and JavaScript. Our results show only a weak relationship.
Consequently, we need to rethink how we assess the importance
of a given library, as the low correlations between downloads
and stars demonstrate that many stars do not necessarily imply
usage. Consequently, at least for PHP and Ruby, we have to
decide between either using GitHub stars or download numbers.
Using a set of handcrafted fingerprints for 58 JavaScript
libraries, we discovered 202 077 fingerprints across the Tranco
Top 100 000 websites, revealing a moderate yet significant cor-
relation between downloads, stars, and deployments. However,
considering we selected only client-side JavaScript projects,
this conclusion might not hold up for server-side deployed code.
This valuation gains credence by the diverging distribution of
projects concerning the combination of stars and downloads
across our studied languages. The pure server-side languages
show a large proportion of projects enjoying large download
numbers but low star counts, and JavaScript as a mixed
language shows an increased amount of low download but
high star projects. Future work needs to extend our assessment
of deployments to include server-side modules and languages.
Still, for now, we recommend, at least for client-side JavaScript,
using downloads as an importance metric as it has a slightly
higher correlation than stars. For any other code reporting both
metrics – downloads and GitHub Stars – seems most prudent.
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APPENDIX

TABLE IV: The JavaScript projects included in the fingerprint
study with their corresponding download count according to
npm, GitHub stars, and number of detected deployments.

# Library � ⋆ Count

1 optical-properties 3 444 780 18 0
2 rapidoc 894 874 1469 0
3 nua 836 507 1 0
4 trim-right-x 7 810 877 0 0
5 non-layered-tidy-tree-

layout
5 745 148 18 0

6 security 1 397 439 8 0
7 pdfmake-unicode 214 181 3 0
8 utils-deep-get 287 564 4 0
9 helix-ui 116 330 56 0
10 xml-beautify 195 794 22 0
11 dhtmlx-scheduler 449 047 281 1
12 measure-text 225 193 87 2
13 huebee 484 183 393 2
14 a11y-accordion-tabs 171 068 69 3
15 reading-position-

indicator
147 253 20 4

16 svelte 105 885 048 74 523 4
17 avro-js 793 394 2660 5
18 alasql 4 146 582 6812 13
19 markdown-it 548 898 716 16 490 25
20 bitmovin-player-ui 786 753 124 27
21 froala-editor 23 790 849 30 93
22 plupload 1 008 044 5617 96
23 raf-polyfill 1 927 041 7 103
24 jplayer 982 241 4609 119
25 tinymce 54 658 518 13 828 122
26 jszip 1 002 809 881 9278 143
27 dojo 4 381 012 1535 148
28 ckeditor 12 545 370 516 152
29 ember 598 869 0 161
30 mathjax 21 681 376 9717 168
31 jquery-mobile 555 892 9708 328
32 scrollmagic 6 620 715 14 632 450
33 highcharts 165 358 617 203 468
34 chart.js 375 815 970 62 604 521
35 knockout 13 961 224 10 386 541
36 alpinejs 12 527 026 25 677 541
37 yui 8 944 075 4105 586
38 datatables.net 65 543 631 43 731
39 underscore 2 608 656 055 27 150 860
40 backbone 153 704 263 28 056 993
41 vuex 332 129 241 28 300 1298
42 angular 157 516 160 59 010 1858
43 mustache 548 355 018 16 128 1906
44 jquery-validation 31 576 952 10 329 2171
45 handlebars 2 448 503 818 17 512 2646
46 dompurify 359 961 126 12 125 3588
47 axios 4 802 711 325 102 861 4602
48 vue 745 375 498 42 166 5133
49 js-cookie 751 975 585 21 303 5587
50 lazysizes 43 609 147 17 152 6336
51 moment 4 058 780 891 47 632 7034
52 jquery-migrate 24 459 980 1966 9775
53 jquery-ui 100 676 754 11 191 11 682
54 react 2 907 303 439 216 468 17 736
55 uuid 12 217 638 867 13 945 18 360
56 bootstrap 829 269 792 166 274 20 580
57 lodash 10 601 765 714 58 117 21 237
58 jquery 1 147 448 038 58 170 48 755

8


	Introduction 
	Background 
	Testing GitHub Stars as a Metric 
	Hypotheses and Study Pre-Registration
	Meta Metrics: GitHub Stars and Total Downloads
	Deployment Metric: Fingerprinting the Web
	Calculating the Correlation and Significance

	Results 
	GitHub Stars and Total Downloads
	Detected Deployments
	Correlations

	Discussion
	Untrustworthy Connection Between Project and Repository
	Unreasonable Disconnect Between Downloads and Stars
	Correlations
	Limitations
	Lessons Learned and Outlook

	Related Work 
	Conclusion 

