
Exploring Synergies Between Privacy and Security Enhancing

Technologies

David Klein

Institute for Application Security

Technische Universität Braunschweig

david.klein@tu-braunschweig.de

https://www.tu-braunschweig.de/ias
https://www.tu-braunschweig.de/
david.klein@tu-braunschweig.de

Preliminaries

▶ This is a sneak peak for a (so far) non public paper

⇒⇒ David Klein, Benny Rolle, Thomas Barber, Manuel Karl, and Martin Johns.
“General Data Protection Runtime: Enforcing Transparent GDPR Compliance for
Existing Applications”. In: ACM CCS. To appear. 2023

2

Preliminaries

▶ This talk covers privacy and some aspects of GDPR

▶ Some legal aspects

⇒⇒ I’m not a lawyer!

2

Preliminaries

Setting:

▶ User of the software is not an adversary
⇒⇒ Wants to keep software secure
⇒⇒ Wants to comply with GDPR

2

Security Enhancing Technologies?

3

Example: Stored Cross-Site Scripting

1 app.post('/subscribe', (req, res) => {

2 const email = req.body.email;

3

4 db.saveEmail(email);

5

6 res.send('Subscription successful!');

7 });

8

9 app.get('/emails', (req, res) => {

10 let data = db.getEmails();

11

12 return res.render("emails", { emails: data });

13 });

4

Example: Stored Cross-Site Scripting

1 app.post('/subscribe', (req, res) => {

2 const email = req.body.email;

3

4 db.saveEmail(email);

5

6 res.send('Subscription successful!');

7 });

8

9 app.get('/emails', (req, res) => {

10 let data = db.getEmails();

11

12 return res.render("emails", { emails: data });

13 });

User controlled data enters application

4

Example: Stored Cross-Site Scripting

1 app.post('/subscribe', (req, res) => {

2 const email = req.body.email;

3

4 db.saveEmail(email);

5

6 res.send('Subscription successful!');

7 });

8

9 app.get('/emails', (req, res) => {

10 let data = db.getEmails();

11

12 return res.render("emails", { emails: data });

13 });

User controlled data enters application

Save to storage

4

Example: Stored Cross-Site Scripting

1 app.post('/subscribe', (req, res) => {

2 const email = req.body.email;

3

4 db.saveEmail(email);

5

6 res.send('Subscription successful!');

7 });

8

9 app.get('/emails', (req, res) => {

10 let data = db.getEmails();

11

12 return res.render("emails", { emails: data });

13 });

User controlled data enters application

Save to storage

Read from storage

4

Example: Stored Cross-Site Scripting

1 app.post('/subscribe', (req, res) => {

2 const email = req.body.email;

3

4 db.saveEmail(email);

5

6 res.send('Subscription successful!');

7 });

8

9 app.get('/emails', (req, res) => {

10 let data = db.getEmails();

11

12 return res.render("emails", { emails: data });

13 });

User controlled data enters application

Save to storage

Read from storage

User controlled data is rendered

4

Example: Stored Cross-Site Scripting

1 app.post('/subscribe', (req, res) => {

2 const email = req.body.email;

3

4 db.saveEmail(email);

5

6 res.send('Subscription successful!');

7 });

8

9 app.get('/emails', (req, res) => {

10 let data = db.getEmails();

11

12 return res.render("emails", { emails: data });

13 });

User controlled data enters application

Save to storage

Read from storage

User controlled data is rendered

4

Security Enhancing Technologies?

▶ Dynamic Taint Tracking

– Attach labels to data
– Can prevent most “Injection Vulnerabilities” (A03 in OWASP Top 10 2021)

5

Security Enhancing Technologies?

▶ Dynamic Taint Tracking
– Attach labels to data

– Can prevent most “Injection Vulnerabilities” (A03 in OWASP Top 10 2021)

5

Security Enhancing Technologies?

▶ Dynamic Taint Tracking
– Attach labels to data
– Can prevent most “Injection Vulnerabilities” (A03 in OWASP Top 10 2021)

5

Security Enhancing Technologies?

▶ Dynamic Taint Tracking
– Attach labels to data
– Can prevent most “Injection Vulnerabilities” (A03 in OWASP Top 10 2021)

- Source: body.email
- Sanitized: false

L E T T E R S

5

Security Enhancing Technologies?

▶ Dynamic Taint Tracking
– Attach labels to data
– Can prevent most “Injection Vulnerabilities” (A03 in OWASP Top 10 2021)

Insecure Application

Taint Engine

Secure Application

5

Preventing Stored Cross-Site Scripting

1 app.post('/subscribe', (req, res) => {

2 const email = req.body.email;

3

4 db.saveEmail(email);

5

6 res.send('Subscription successful!');

7 });

8

9 app.get('/emails', (req, res) => {

10 let data = db.getEmails();

11

12 return res.render("emails", { emails: data });

13 });

6

Preventing Stored Cross-Site Scripting

1 app.post('/subscribe', (req, res) => {

2 const email = req.body.email;

3

4 db.saveEmail(email);

5

6 res.send('Subscription successful!');

7 });

8

9 app.get('/emails', (req, res) => {

10 let data = db.getEmails();

11

12 return res.render("emails", { emails: data });

13 });

Attach metadata

6

Preventing Stored Cross-Site Scripting

1 app.post('/subscribe', (req, res) => {

2 const email = req.body.email;

3

4 db.saveEmail(email);

5

6 res.send('Subscription successful!');

7 });

8

9 app.get('/emails', (req, res) => {

10 let data = db.getEmails();

11

12 return res.render("emails", { emails: data });

13 });

Attach metadata

Persist metadata

6

Preventing Stored Cross-Site Scripting

1 app.post('/subscribe', (req, res) => {

2 const email = req.body.email;

3

4 db.saveEmail(email);

5

6 res.send('Subscription successful!');

7 });

8

9 app.get('/emails', (req, res) => {

10 let data = db.getEmails();

11

12 return res.render("emails", { emails: data });

13 });

Attach metadata

Persist metadata

Restore metadata

6

Preventing Stored Cross-Site Scripting

1 app.post('/subscribe', (req, res) => {

2 const email = req.body.email;

3

4 db.saveEmail(email);

5

6 res.send('Subscription successful!');

7 });

8

9 app.get('/emails', (req, res) => {

10 let data = db.getEmails();

11

12 return res.render("emails", { emails: data });

13 });

Attach metadata

Persist metadata

Restore metadata

Automated Sanitizer placement

6

Preventing Stored Cross-Site Scripting

1 app.post('/subscribe', (req, res) => {

2 const email = req.body.email;

3

4 db.saveEmail(email);

5

6 res.send('Subscription successful!');

7 });

8

9 app.get('/emails', (req, res) => {

10 let data = db.getEmails();

11

12 return res.render("emails", { emails: data });

13 });

Attach metadata

Persist metadata

Restore metadata

Automated Sanitizer placement

6

From Security to Privacy

7

GDPR Violation

▶ In the context of this talk: GDPR Violation = Violation of Purpose Binding

▶ In my opinion among the most important articles
▶ If done right, determines what controller can do with PII

– As seen in Simons talk, great success in the wild �

8

GDPR Violation

▶ In the context of this talk: GDPR Violation = Violation of Purpose Binding

▶ Purpose Binding:

Personal data shall be: collected for specified, explicit and legitimate purposes
and not further processed in a manner that is incompatible with those pur-
poses;. . .

—GDPR Article 5(1)(b)

▶ In my opinion among the most important articles
▶ If done right, determines what controller can do with PII

– As seen in Simons talk, great success in the wild �

8

GDPR Violation

▶ In the context of this talk: GDPR Violation = Violation of Purpose Binding

▶ Purpose Binding:

Personal data shall be: collected for specified, explicit and legitimate purposes
and not further processed in a manner that is incompatible with those pur-
poses;. . .

—GDPR Article 5(1)(b)

▶ In my opinion among the most important articles

▶ If done right, determines what controller can do with PII

– As seen in Simons talk, great success in the wild �

8

GDPR Violation

▶ In the context of this talk: GDPR Violation = Violation of Purpose Binding

▶ Purpose Binding:

Personal data shall be: collected for specified, explicit and legitimate purposes
and not further processed in a manner that is incompatible with those pur-
poses;. . .

—GDPR Article 5(1)(b)

▶ In my opinion among the most important articles
▶ If done right, determines what controller can do with PII

– As seen in Simons talk, great success in the wild �

8

GDPR Violation

▶ In the context of this talk: GDPR Violation = Violation of Purpose Binding

▶ Purpose Binding:

Personal data shall be: collected for specified, explicit and legitimate purposes
and not further processed in a manner that is incompatible with those pur-
poses;. . .

—GDPR Article 5(1)(b)

▶ In my opinion among the most important articles
▶ If done right, determines what controller can do with PII

– As seen in Simons talk, great success in the wild �

8

GDPR Violation

1 app.post('/purchase', (req, res) => {

2 ...

3 const email = req.body.email;

4 db.saveOrder({ ...

5 email: email,

6 });

7

8 res.send('Purchase successful!');

9 });

10

11 // Automated backend

12 function sendNewsletter() {

13 let data = db.getEmails();

14 for (let email of data) {

15 sendNewsletter(email);

16 }

17 });

9

GDPR Violation

1 app.post('/purchase', (req, res) => {

2 ...

3 const email = req.body.email;

4 db.saveOrder({ ...

5 email: email,

6 });

7

8 res.send('Purchase successful!');

9 });

10

11 // Automated backend

12 function sendNewsletter() {

13 let data = db.getEmails();

14 for (let email of data) {

15 sendNewsletter(email);

16 }

17 });

PII entering application

9

GDPR Violation

1 app.post('/purchase', (req, res) => {

2 ...

3 const email = req.body.email;

4 db.saveOrder({ ...

5 email: email,

6 });

7

8 res.send('Purchase successful!');

9 });

10

11 // Automated backend

12 function sendNewsletter() {

13 let data = db.getEmails();

14 for (let email of data) {

15 sendNewsletter(email);

16 }

17 });

PII entering application

Storing PII

9

GDPR Violation

1 app.post('/purchase', (req, res) => {

2 ...

3 const email = req.body.email;

4 db.saveOrder({ ...

5 email: email,

6 });

7

8 res.send('Purchase successful!');

9 });

10

11 // Automated backend

12 function sendNewsletter() {

13 let data = db.getEmails();

14 for (let email of data) {

15 sendNewsletter(email);

16 }

17 });

PII entering application

Storing PII

Reading PII

9

GDPR Violation

1 app.post('/purchase', (req, res) => {

2 ...

3 const email = req.body.email;

4 db.saveOrder({ ...

5 email: email,

6 });

7

8 res.send('Purchase successful!');

9 });

10

11 // Automated backend

12 function sendNewsletter() {

13 let data = db.getEmails();

14 for (let email of data) {

15 sendNewsletter(email);

16 }

17 });

PII entering application

Storing PII

Reading PII

(Mis)using PII

9

GDPR Violation

1 app.post('/purchase', (req, res) => {

2 ...

3 const email = req.body.email;

4 db.saveOrder({ ...

5 email: email,

6 });

7

8 res.send('Purchase successful!');

9 });

10

11 // Automated backend

12 function sendNewsletter() {

13 let data = db.getEmails();

14 for (let email of data) {

15 sendNewsletter(email);

16 }

17 });

PII entering application

Storing PII

Reading PII

(Mis)using PII

9

Those look fairly similar, right?

10

Tainting for GDPR Compliance

▶ Important difference:
– Deciding whether data flow is “unwanted” is much more involved for privacy
– Requires more complex metadata

Allowed Purposes: {A, B}
Protection Level: Normal
Data Subject: Alice
Data ID: 4549791
Qualified for Portability: Yes
Processing Restricted: No

H I A L I C E !

Purpose: A
Vendor: ACME Corp.
Expiry Date: 2023-01-01
Purpose: B
Vendor: Tyrell Corp.
Expiry Date: 2022-06-01

GDPR Taint Metadata

11

Tainting for GDPR Compliance

▶ Important difference:
– Deciding whether data flow is “unwanted” is much more involved for privacy
– Requires more complex metadata

Allowed Purposes: {A, B}
Protection Level: Normal
Data Subject: Alice
Data ID: 4549791
Qualified for Portability: Yes
Processing Restricted: No

H I A L I C E !

Purpose: A
Vendor: ACME Corp.
Expiry Date: 2023-01-01
Purpose: B
Vendor: Tyrell Corp.
Expiry Date: 2022-06-01

GDPR Taint Metadata

11

Preventing GDPR Violation

1 app.post('/purchase', (req, res) => {

2 ...

3 const email = req.body.email;

4 db.saveOrder({ ...

5 email: email,

6 });

7

8 res.send('Subscription successful!');

9 });

10

11 // Automated backend

12 function sendNewsletter() {

13 let data = db.getEmails();

14 for (let email of data) {

15 sendNewsletter(email);

16 }

17 });

12

Preventing GDPR Violation

1 app.post('/purchase', (req, res) => {

2 ...

3 const email = req.body.email;

4 db.saveOrder({ ...

5 email: email,

6 });

7

8 res.send('Subscription successful!');

9 });

10

11 // Automated backend

12 function sendNewsletter() {

13 let data = db.getEmails();

14 for (let email of data) {

15 sendNewsletter(email);

16 }

17 });

Attach GDPR metadata

12

Preventing GDPR Violation

1 app.post('/purchase', (req, res) => {

2 ...

3 const email = req.body.email;

4 db.saveOrder({ ...

5 email: email,

6 });

7

8 res.send('Subscription successful!');

9 });

10

11 // Automated backend

12 function sendNewsletter() {

13 let data = db.getEmails();

14 for (let email of data) {

15 sendNewsletter(email);

16 }

17 });

Attach GDPR metadata

Persist metadata

12

Preventing GDPR Violation

1 app.post('/purchase', (req, res) => {

2 ...

3 const email = req.body.email;

4 db.saveOrder({ ...

5 email: email,

6 });

7

8 res.send('Subscription successful!');

9 });

10

11 // Automated backend

12 function sendNewsletter() {

13 let data = db.getEmails();

14 for (let email of data) {

15 sendNewsletter(email);

16 }

17 });

Attach GDPR metadata

Persist metadata

Restore metadata

12

Preventing GDPR Violation

1 app.post('/purchase', (req, res) => {

2 ...

3 const email = req.body.email;

4 db.saveOrder({ ...

5 email: email,

6 });

7

8 res.send('Subscription successful!');

9 });

10

11 // Automated backend

12 function sendNewsletter() {

13 let data = db.getEmails();

14 for (let email of data) {

15 sendNewsletter(email);

16 }

17 });

Attach GDPR metadata

Persist metadata

Restore metadata

Check compliance of data flow

12

Preventing GDPR Violation

1 app.post('/purchase', (req, res) => {

2 ...

3 const email = req.body.email;

4 db.saveOrder({ ...

5 email: email,

6 });

7

8 res.send('Subscription successful!');

9 });

10

11 // Automated backend

12 function sendNewsletter() {

13 let data = db.getEmails();

14 for (let email of data) {

15 sendNewsletter(email);

16 }

17 });

Attach GDPR metadata

Persist metadata

Restore metadata

Check compliance of data flow

12

Restoring metadata?

▶ Data flows going through storage historically problematic

⇒⇒ Most taint engines lose metadata

▶ Prevents detection and prevention of complex Vulnerabilities

⇒⇒ Persisting taints is essential

13

Restoring metadata?

▶ Data flows going through storage historically problematic
⇒⇒ Most taint engines lose metadata

▶ Prevents detection and prevention of complex Vulnerabilities

⇒⇒ Persisting taints is essential

13

Restoring metadata?

▶ Data flows going through storage historically problematic
⇒⇒ Most taint engines lose metadata

▶ Prevents detection and prevention of complex Vulnerabilities

⇒⇒ Persisting taints is essential

13

Restoring metadata?

▶ Data flows going through storage historically problematic
⇒⇒ Most taint engines lose metadata

▶ Prevents detection and prevention of complex Vulnerabilities

⇒⇒ Persisting taints is essential

13

Restoring metadata?

▶ Data flows going through storage historically problematic
⇒⇒ Most taint engines lose metadata

▶ Prevents detection and prevention of complex Vulnerabilities

⇒⇒ Persisting taints is essential

Solution:

▶ Rewrite SQL queries on the fly to persist metadata alongside data

13

Restoring metadata?

▶ Data flows going through storage historically problematic
⇒⇒ Common taint engines lose metadata

▶ Prevents detection and prevention of complex Vulnerabilities

⇒⇒ Persisting taints is essential

Solution:

▶ Rewrite SQL queries on the fly to persist metadata alongside data

▶ Before:

UPDATE a = ? in tbl WHERE id = ?;

▶ After:

UPDATE a = ?, at = ? in tbl WHERE id = ?;

14

Why don’t people use the magic tainting box?

Benchmark Overhead

avrora 6.8%
batik 11.2%
biojava 104.4%
graphchi -2.3%
luindex 7.2%
sunflow -1.2%
zxing 5.6%
fop 33.8%
h2 111.2%
jme 1.1%

Average 27.8%

15

Why don’t people use the magic tainting box?

Benchmark Overhead

avrora 6.8%
batik 11.2%
biojava 104.4%
graphchi -2.3%
luindex 7.2%
sunflow -1.2%
zxing 5.6%
fop 33.8%
h2 111.2%
jme 1.1%

Average 27.8%

15

Why don’t people use the magic tainting box?

Benchmark Overhead

avrora 6.8%
batik 11.2%
biojava 104.4%
graphchi -2.3%
luindex 7.2%
sunflow -1.2%
zxing 5.6%
fop 33.8%
h2 111.2%
jme 1.1%

Average 27.8%

15

Why don’t people use the magic tainting box?

Benchmark Overhead

avrora 6.8%
batik 11.2%
biojava 104.4%
graphchi -2.3%
luindex 7.2%
sunflow -1.2%
zxing 5.6%
fop 33.8%
h2 111.2%
jme 1.1%

Average 27.8%

15

Summary

▶ We built a prototype realizing concepts presented today
– for “arbitrary” Java applications
– Collaboration with SAP Security Research
– called Fontus

▶ Concept is generic and not reliant on our prototype

▶ Attaching privacy metadata to data really powerful
– Allows to automate e.g., Subject Access Requests

⇒⇒ Security and Privacy despite Design

▶ What’s the maximum overhead for people to apply tainting in production?

16

Summary

▶ We built a prototype realizing concepts presented today
– for “arbitrary” Java applications
– Collaboration with SAP Security Research
– called Fontus

▶ Concept is generic and not reliant on our prototype

▶ Attaching privacy metadata to data really powerful
– Allows to automate e.g., Subject Access Requests

⇒⇒ Security and Privacy despite Design

▶ What’s the maximum overhead for people to apply tainting in production?

16

Summary

▶ We built a prototype realizing concepts presented today
– for “arbitrary” Java applications
– Collaboration with SAP Security Research
– called Fontus

▶ Concept is generic and not reliant on our prototype

▶ Attaching privacy metadata to data really powerful
– Allows to automate e.g., Subject Access Requests

⇒⇒ Security and Privacy despite Design

▶ What’s the maximum overhead for people to apply tainting in production?

16

Summary

▶ We built a prototype realizing concepts presented today
– for “arbitrary” Java applications
– Collaboration with SAP Security Research
– called Fontus

▶ Concept is generic and not reliant on our prototype

▶ Attaching privacy metadata to data really powerful
– Allows to automate e.g., Subject Access Requests

⇒⇒ Security and Privacy despite Design

▶ What’s the maximum overhead for people to apply tainting in production?

16

Summary

▶ We built a prototype realizing concepts presented today
– for “arbitrary” Java applications
– Collaboration with SAP Security Research
– called Fontus

▶ Concept is generic and not reliant on our prototype

▶ Attaching privacy metadata to data really powerful
– Allows to automate e.g., Subject Access Requests

⇒⇒ Security and Privacy despite Design

▶ What’s the maximum overhead for people to apply tainting in production?

16

Thank you for your attention!

17

Contact
david.klein@tu-braunschweig.de

ï david-klein-b2aa80254
� twitter.com/ncd_leen

david.klein@tu-braunschweig.de
https://www.linkedin.com/in/david-klein-b2aa80254/
twitter.com/ncd_leen

	Security Enhancing Technologies?
	From Security to Privacy

