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Preliminaries

▶ This is a sneak peak for a (so far) non public paper

⇒⇒ David Klein, Benny Rolle, Thomas Barber, Manuel Karl, and Martin Johns.
“General Data Protection Runtime: Enforcing Transparent GDPR Compliance for
Existing Applications”. In: ACM CCS. To appear. 2023
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Preliminaries

▶ This talk covers privacy and some aspects of GDPR

▶ Some legal aspects

⇒⇒ I’m not a lawyer!
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Preliminaries

Setting:

▶ User of the software is not an adversary
⇒⇒ Wants to keep software secure
⇒⇒ Wants to comply with GDPR
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Security Enhancing Technologies?
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Example: Stored Cross-Site Scripting

1 app.post('/subscribe', (req, res) => {

2 const email = req.body.email;

3

4 db.saveEmail(email);

5

6 res.send('Subscription successful!');

7 });

8

9 app.get('/emails', (req, res) => {

10 let data = db.getEmails();

11

12 return res.render("emails", { emails: data });

13 });
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Security Enhancing Technologies?

▶ Dynamic Taint Tracking

– Attach labels to data
– Can prevent most “Injection Vulnerabilities” (A03 in OWASP Top 10 2021)
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Security Enhancing Technologies?

▶ Dynamic Taint Tracking
– Attach labels to data
– Can prevent most “Injection Vulnerabilities” (A03 in OWASP Top 10 2021)

- Source: body.email
- Sanitized: false

L E T T E R S
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Security Enhancing Technologies?

▶ Dynamic Taint Tracking
– Attach labels to data
– Can prevent most “Injection Vulnerabilities” (A03 in OWASP Top 10 2021)

Insecure Application

Taint Engine

Secure Application
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Preventing Stored Cross-Site Scripting
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From Security to Privacy
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GDPR Violation

▶ In the context of this talk: GDPR Violation = Violation of Purpose Binding

▶ In my opinion among the most important articles
▶ If done right, determines what controller can do with PII

– As seen in Simons talk, great success in the wild �
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Those look fairly similar, right?
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Tainting for GDPR Compliance

▶ Important difference:
– Deciding whether data flow is “unwanted” is much more involved for privacy
– Requires more complex metadata

Allowed Purposes: {A, B}
Protection Level: Normal
Data Subject: Alice
Data ID: 4549791
Qualified for Portability: Yes
Processing Restricted: No

H I A L I C E !

Purpose: A
Vendor: ACME Corp.
Expiry Date: 2023-01-01
Purpose: B
Vendor: Tyrell Corp.
Expiry Date: 2022-06-01

GDPR Taint Metadata
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Restoring metadata?

▶ Data flows going through storage historically problematic

⇒⇒ Most taint engines lose metadata

▶ Prevents detection and prevention of complex Vulnerabilities

⇒⇒ Persisting taints is essential
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Restoring metadata?

▶ Data flows going through storage historically problematic
⇒⇒ Common taint engines lose metadata

▶ Prevents detection and prevention of complex Vulnerabilities

⇒⇒ Persisting taints is essential

Solution:

▶ Rewrite SQL queries on the fly to persist metadata alongside data

▶ Before:

UPDATE a = ? in tbl WHERE id = ?;

▶ After:

UPDATE a = ?, at = ? in tbl WHERE id = ?;
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Why don’t people use the magic tainting box?

Benchmark Overhead

avrora 6.8%
batik 11.2%
biojava 104.4%
graphchi -2.3%
luindex 7.2%
sunflow -1.2%
zxing 5.6%
fop 33.8%
h2 111.2%
jme 1.1%

Average 27.8%
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Summary

▶ We built a prototype realizing concepts presented today
– for “arbitrary” Java applications
– Collaboration with SAP Security Research
– called Fontus

▶ Concept is generic and not reliant on our prototype

▶ Attaching privacy metadata to data really powerful
– Allows to automate e.g., Subject Access Requests

⇒⇒ Security and Privacy despite Design

▶ What’s the maximum overhead for people to apply tainting in production?
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Thank you for your attention!
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